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Abstract 

Edge Coloring is the following optimization problem: 

Given a graph, how many colors are required to color its edges 
in such a way that no two edges which share an endpoint receive 
the same color? 

The required number of colors is called the chromatic index of G and is 
denoted by x'{G). We consider the edge coloring problem in the framework 
of the relationship between an integer program and its linear programming 
relaxation. To do this we first formulate edge coloring as an integer program 
and let x*(G) be the optimum of the linear programming relaxation (called 
the fractional chromatic index). For any graph G one can compute x*(G) in 
polynomial time but deciding whether x'{G) = A or x'(G) = A + 1 is NP- 
Complete. So it would be of interest to determine for which simple graphs 
x'(G) = \x*(G)] as we can compute x'{G) for graphs in these classes. 
In this thesis we show that large classes of graphs satisfy this equality. More 
precisely, we show that if a graph G is large enough, has large maximum 
degree and satisfies two technical conditions, then the equality holds. The 
constructive proof provides a randomized polynomial time algorithm for 
optimally coloring the edges of such graphs. We use a deterministic version 
of this algorithm to design the first algorithm that computes an optimal 
edge coloring of any graph in polynomial time, on average. 
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Chapter 1 

Introduction 

1.1    The bird's eye view 

Edge Coloring is the following optimization problem: 

Given a graph, how many colors are required to color its edges 
in such a way that no two edges which share an endpoint receive 
the same color? 

This question is one of the oldest in graph theory. As pointed out by Tait 
[Tai80] in 1880, the celebrated four color conjecture is equivalent to the state- 
ment that the edges of every bridge-less, cubic planar graph can be colored 
using three colors (for an overview of the terminology, see section 1.3). Sev- 
eral years later, in 1891, Petersen [Pet91], while studying the factorization 
of certain polynomials, pointed out that there are bridge-less cubic graphs 
which are not three edge colorable (for example the infamous Petersen graph, 
in figure 1.1). 

In 1916 König [K16], while studying the factorization of the determinants of 
matrices, proved that for every bipartite graph G, the minimum number of 
colors needed to color the edges of G is equal to the maximum vertex degree 
in G. This theorem can be seen as a consequence of König's Bipartite Match- 
ing Min-Max theorem; König's theorem is in turn equivalent to Menger's 
Theorem [Men27] proved in 1927, Hall's Theorem [Hal35] proved in 1935, 
the Birkhoff-Von Neumann Theorem [Bir46] proved in 1946, Dilworth's The- 
orem [Dil50] proved in 1950, and Ford and Fulkerson's Max-Flow Min-Cut 

1 
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Figure 1.1: Petersen graph 

Theorem [FF56] proved in 1956. (For a study of these equivalences see 
[FF62] and [LP86]). Thus, we see that edge coloring problem is also linked 
to important developments in combinatorial optimization. 

Let the chromatic index of G, denoted by x'(G) or simply x' ■> be the mini- 
mum number of colors required to color the edges of G. Let A(G) or simply 
A be the maximum vertex degree in G. It is easy to see that x'(G) > A. 
Note that König's edge-coloring theorem states that x'(G) = A if G is bi- 
partite. We remark however that not every graph is A edge colorable. For 
example, if G is an odd cycle, A(G) = 2 colors are not enough to color the 
edges of G; a third color is required. In 1964, Vizing [Viz64] proved that 
A(G) + 1 colors are sufficient in general: in other words, every simple (with- 
out loops or multiple edges) graph G of maximum degree A has chromatic 
index x' = A or x' — A + 1. 

The algorithmic aspects of computing the chromatic index and an optimal 
edge-coloring also have a long history. A polynomial time edge-coloring al- 
gorithm for simple bipartite graphs easily follows from the original construc- 
tive proof by König. In the general case, Fournier [Fou73] applied ideas from 
Vizing's original proof to develop a polynomial time algorithm that colors 
the edges of a simple graph with A + 1 colors. Fournier's algorithm actually 
uses A colors if the vertices of maximum degree in the input graph induce 
an acyclic subgraph (i.e. a forest). 

Given these positive algorithmic results, it is somewhat surprising that opti- 
mally coloring the edges of an arbitrary simple graph is hard. In 1981, Holyer 
showed that the question of deciding whether x'{G) = A or x'(G) = A + 1 
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is jVP-complete. 

In order to further motivate our interest in the edge coloring problem and 
provide insight into the heart of its difficulties, we introduce, as Lovasz and 
Plummer did in [LP86], a useful framework, originally introduced by Stahl 
[Sta79] and Seymour [Sey79]. We first formulate the edge-coloring problem 
as an integer program. To this end, let M{G) (or simply M) be the set of all 
matchings of G and let Me(G) (or simply Me) be the set of all matchings 
of G that contain the edge e € E. Then 

X'(G) = min £ yM (1.1) 
MEM 

subject to: 

(i)    ^2  yj* = 1, for all e£E, 
M£Me 

(Ü) VM € {0,1}, for all M G M, 

By removing the integrality condition from (ii), we obtain the linear pro- 
gram 

min ^2 VM (1-2) 

subject to: 

(i)    Yl   VM 
=
 

1
' 

for a11 e€E, 
M&Me 

(ii) VM > 0, for all M e M, 

We call the solution to this linear program the fractional chromatic in- 
dex of G and denote it by x*(G), or simply x*. Obviously, x' > X* and 
it is easy to check that x* > A. The important observation is that x* 
can be computed in polynomial time, with the ellipsoid algorithm (see the 
discussion in section 1.3). 
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There is another, more combinatorial approach to understanding the frac- 
tional chromatic index. Edmond's characterization of the matching polytope 
([Edm65a]) yields a formula for X*(G) (see [Sey79, Sta79]): 

X*(G) = max{A(G), max ^^} (1.3) 

where H is the set of all subgraphs of G with an odd number of 3 or more 
vertices (in order to avoid cumbersome notation, we slightly abuse notation 
by denoting by H the set of vertices of the subgraph H). A graph H G H 

is called overfull if \E(H)\ > A(H)^tl- we note that \H\ must be odd 
\H\ — 1 

and at least 3. Since \H\ is odd, in any edge coloring of H, at most J—£— 
Uli 

edges in E(H) may have the same color, so at most A{Hy—^— edges of 
H can be colored with A(H) colors. Consequently, x'(H) = A(H) + 1. 
If a simple graph G contains an overfull subgraph H of maximum degree 
A(H) = A(G) = A, it follows that x'(G) = A + 1. Equivalent^/, by (1.3) 
x'(G) > X*(G) > A so x'{G) = A + l. An important paper by Padberg and 
Rao [PR82] on computing minimum odd-cuts gives a tool for determining 
an overfull subgraph of G of maximum degree A in time 0(n4). Using 
their algorithm, one can compute x*(G) in polynomial time in a purely 
combinatorial way. 

A study of the relationship between %' and x* thus proves to be a valuable 
one. It is of interest to determine for what classes of simple graphs x'(G) — 
\x*(G)] as we can compute x'(G) for graphs in these classes. More generally, 
the relationship between x' an(l X* IS an instance of a fundamental question 
in combinatorial optimization: what is the relationship between an Integer 
Program and its Linear Programming relaxation? 

Many of the seminal results mentioned above describe classes of graphs for 
which x'(G) = \x*{G)]- König's theorem basically says that for bipartite 
graphs x' — X* = A. An equivalent statement of the four color theorem, 
proved by Appel and Haken [AH76] in 1976, is that for planar cubic graphs 
x' = \x*]- In a recent development, Robertson, Seymour and Thomas 
[RST97] have generalized this result to cubic graphs with no Petersen graph 
minor by proving Tutte's longstanding edge-coloring conjecture: 

Theorem 1 (Tutte's conjecture) // a 2-edge connected cubic graph G 
contains no Petersen graph as a minor then G is 3 edge-colorable. 
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In the same vein, Reed [Ree95] has shown that a similar relationship holds 
for a generalization of bipartite graphs. We call a graph G near-bipartite if 
for some vertex x of V, the graph G—x is bipartite. Reed [Ree95] proved that 
if G is near-bipartite then x'(G) = [x*(G)l- He also presented a polynomial- 
time algorithm for optimally edge-coloring near-bipartite graphs. As we will 
require this result, we present the algorithm in detail in Appendix A. 

A number of conjectures have been proposed regarding the relationship be- 
tween x' and x*- Goldberg [Gol73, Gol84], Andersen [And77] and Seymour 
[Sey79] independently proposed to generalize Vizing's theorem to multi- 
graphs (graphs with multiple edges). Specifically, we have the following 
conjecture: 

Conjecture 1 (Goldberg-Seymour conjecture) 

x'<max{A + l,rX*l} 

Seymour also suggested a weaker conjecture equivalent to the statement 
x' < max{A, x*} +1. The Goldberg-Seymour conjecture has been shown to 
hold for graphs with maximum degree up to 11 (see [And77, Gol77, Gol84, 
NK85, NK90]). Marcotte [Mar90] proved that the conjecture is true for any 
graph that does not contain K§ as a minor (K§ is obtained from K§ by 
deleting an edge). Planholt and Tipnis [PT91] have verified the conjecture 
when A is very large, relative to |V| (A must be on the order of fj,(G)\V(G)\ 
where fJ,(G) is the multiplicity of G). Finally, Kahn [Kah96] has shown that 
the conjecture is true asymptotically. 

We will not have much to say about the Goldberg-Seymour conjecture in 
this thesis. Of more importance to us is the following conjecture proposed 
by Hilton [CH86], which does imply the Goldberg-Seymour conjecture for 
all graphs for which \V(G)\ < 3A(G): 

Conjecture 2 (Hilton's overfull subgraph conjecture) If G = (V, E) 
is simple and A(G) > \\V\ then X'(G) = \x*(G)]. 

The graph G obtained from Petersen's graph by removing a vertex has 
chromatic index x' > 3 but contains no overfull subgraph H such that 
A(i7) = A(G). So, we clearly cannot decrease | in the above conjecture 
(except, perhaps, if we are are willing to forbid certain subgraphs).   The 
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conjecture is true for all G such that A(G) > \V(G)\ — 3, as proven by Plan- 
tholt [Pla81, Pla83] and by Chetwynd and Hilton [CH84b, CH84a, CH89b]. 
Our interest in Hilton's conjecture is further motivated by the observation 
that the proportion of graphs on n vertices not satisfying the conditions 
of Hilton's conjecture is very, very small (at most e~cn for some c > ^). 
This minuscule probability motivates us to to constructively prove Hilton's 
conjecture, or at least a theorem with similar conditions as Hilton's conjec- 
ture, and use the construction to design an algorithm that efficiently and 
optimally colors the edges of a huge proportion of all graphs. 

The following special case of Hilton's conjecture has been "going around" 
since the early 1950s, according to G. A. Dirac (see [Hil89]): 

Conjecture 3 If G = (V, E) is a A-regular simple graph with 2k vertices 
for some k < A then G is 1-factorizable (A edge colorable). 

An interesting consequence of this conjecture is that for any regular graph 
G either G or its complement has a 1-factorization. Chetwynd and Hilton 

[CH89a] have proved the conjecture if A > ' 2~ |V|. Furthermore Chetwynd 
and Hilton [CH85] note that R. Häggkvist has announced that for any e > 0 
there exists N > 0 so that every A-regular graph G is 1-factorizable if G has 
an even number of vertices greater than N and A > (^ + e)|V|. We stress, 
however, that Conjecture 3 still remains unresolved. 

A number of additional conjectures regarding the edge-coloring properties 
of graphs with high maximum degree have been proposed and can be found 
in [JT95]. Many of them, however, would follow from an affirmative answer 
to Hilton's conjecture. 

1.2    The central results 

The following theorem is a central result of this thesis: 

Theorem 2 (main theorem) There exists Ao such that for all simple 
graphs G = (V,E) with maximum degree A > Ao and n = \V\ < 6A, 
one of the following is true: 

(i) G contains a subgraph H of minimum degree 6(H) > A — A79'80 and 
either: 
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H is bipartite, or 

\V-H\>A- 8A159/160 

(ii) G contains an overfull subgraph H of maximum degree A, 

(iii) G is A edge colorable. 

Furthermore, there is a 0(n4) randomized procedure and a 0(2") determin- 
istic procedure, both of which will output either a A edge coloring of G or a 
subgraph H of G that satisfies one of (i) or (ii). 

The lower bound on the maximum vertex degree Ao satisfies a number of 
inequalities that appear throughout this paper. A corollary of this theorem 
is an asymptotic version of Hilton's conjecture with | replaced by 53- (for 
any e > 0): 

Corollary 3 For every e > 0, there is some Ai such that for all simple 
graphs G = (V,E) with maximum degree A > Ai, if A > 23i|V| then 

X'(G) = \x*(G)] 

We note that when restricted to regular graphs, this corollary is equivalent 
to the result announced by R. Häggkvist: for any e > 0 there exists N > 0 
so that every A-regular graph G is 1-factorizable if G has an even number 
of vertices greater than N and A > (| + e)|F|. 

The main application of our theorem (more precisely, of our deterministic 
edge-coloring algorithm) is the other central result in this thesis. We present 
a deterministic algorithm FAST COLOUR that computes an optimal edge 
coloring of any simple graph in polynomial time on average, assuming a 
uniform distribution of the input graphs. 

1.3    Preliminaries 

In this section, we give a sampling of relevant results from graph theory, al- 
gorithms and complexity theory, polyhedral combinatorics and probabilistic 
methods. We choose to prove in detail the results we use extensively in this 
thesis. 
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1.3.1     Graph theory 

A graph G = (V, E) is defined by a set of vertices V = V(G) and a multi- 
set of edges E = E(G) between pairs of different vertices. Note that we 
allow multiple (or parallel) edges but do not allow loops (e.g. (v,v) for 
some v £ V). The multiplicity of an edge (u,v) G E is the number of 
occurrences of (u,v) in E and is denoted by ß(u,v). The multiplicity of G 
is defined as // = max{/z(tt, v) : (u,v) G #}. If ß < 1, we call G simple. 

We denote by E(H) the set of edges induced by a subset H of V, i.e. all edges 
in E with both endpoints in H. We often will abuse notation and denote by 
H the subgraph of G defined by (H, E(H)). We define E(X, Y) = {(x, y) G 
i?(G) :i£l and y G Y"} for disjoint subsets X and Y of V(G), and we call 
(X, Y) the bipartite subgraph with vertex set X U Y and edge set E(X, Y). 
(We recall that G is bipartite if its vertices can be partitioned into sets A 
and B such that A and B induce empty subgraphs.) 

Two vertices are adjacent if they are endpoints of some edge in E, and an 
edge is incident to a vertex v if v is an endpoint of the edge. The degree 
of a vertex v in the graph G is the number of edges of G incident to v and 
is denoted dG(v), or simply d(v). We also use df§(v) = \E({v},S - {v})\, 
or simply ds(v). The maximum vertex degree in G is denoted by A(G) 
or simply A and the minimum vertex degree in G is denoted by 6(G) or 
simply 6. We emphasize that if H C V, then A(H) = A(H,E(H)) and 
6(H) = 5(H, E(H)). G is r-regular if A = S = r. 

A matching in a graph G = (V, E) is a set of edges no two of which share 
an endpoint. A k edge coloring of a graph is a partition of its edges into 
k matchings. The chromatic index of G, denoted x'{G) or simply x'i is 
the least k for which a k edge coloring of G exists. It is easy to see that 
x'{G) > A. For a deeper, although somewhat outdated, treatment of edge 
coloring, see [FW77]. Given a matching M of G, a path P is M-alternating 
if its edges are alternately in and out of M. If, in addition, the first edge 
and the last edge of P do not belong to M, the path is M-augmenting (see 
figure 1.2); we note that a matching of cardinality \M\ + 1 is obtained by 
removing all edges ofMnP from M and adding the remaining edges of P 
to M. Given matchings M and N, a path P is MiV-alternating if its edges 
are alternating between edges in M and edges in N. 

G' is a reduction of G if A(G') = A(G) — I and there exists a set of 
matchings {Mi,M2, ...,M/} such that G' = G - Mx - M2 - ... - Mt.   We 
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Figure 1.2: Matching M (bold edges) and an M-augmenting path 

remark that given disjoint matchings Mi,...,Mi in a graph G = GQ and 
setting Gi = Gj_i — Mi we have that each Gj is a reduction of G if and 
only if for each i, every vertex of maximum degree in Gj_i is the endpoint 
of some edge of Mj. The observation critical to our problem is that if G' is 
k edge colorable then G is k +1 colorable; in particular, if G' is A(G') edge 
colorable, then G is A edge colorable. 

For the additional graph theoretic concepts that we use, look in [BM76]. In 
the remainder of this discussion, we give the details of Fournier's [Fou73] 
edge coloring algorithm and in the process we prove Vizing's adjacency 
lemma [Viz64]. We will repeatedly make use of these throughout the thesis. 

Fournier's algorithm and Vizing's adjacency lemma 

In order to color the edges of a simple graph G = (V, E) of maximum degree 
A with k > A colors, we iteratively color an additional edge of G until all 
edges of G are colored. If k = A, since not all graphs are A edge colorable, 
we will give a sufficient condition which, if satisfied, allows us to extend a A 
edge coloring of G — (u, v) to a coloring of G. We extend a k edge coloring of 
G - (v, w), where (v, w) is an edge of G, to a k edge coloring of G as follows: 

Let a and ß be some colors among the k colors missing at v and w, 
respectively. Those colors must exist since both v and w are incident 
to at most A — 1 colored edges. If a — ß we easily color (v, w) with 
color a. If v and w belong to separate components of the subgraph 
aß, defined by all a- and /3-colored edges of G — (v, w), we interchange 
the colors a and ß on the connected (path) component starting at v 
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in aß (so that v misses ß) and we color (v, w) with color ß. 

2. If we are not successful in step 1., then v and w are the endpoints of a 
connected (path) component of aß. Furthermore, we can assume that 
for any color 7 missing at w, v and w are the endpoints of a connected 
(path) component of 07 (otherwise, we can color (v,w) in step 1. by- 
replacing ß with 7). We now construct a recoloring sequence of distinct 
vertices W\ = w,W2, —,wi adjacent to v defined so that: 

(i) there are distinct color classes ß\ = ß,..., A-i with ßi missing at 
Wi and (v,Wi+i) is colored ßi, 

(ii) for every i = I,...,I — 1 and for every color 7 missed at Wi, v 
and Wi are the endpoints of a connected (path) component of «7 
(note that (v,Wi+i) belongs to the connected (path) component 
ofaßi), 

(iii) there is some color ß* missing at wi, where either: 

a. /?* misses v, or 
b. W[ and v belong to separate connected components of a/3*, or 
c. ß* = ßi for some i < I — 1. 

Given such a recoloring sequence, we construct a k-edge coloring as 
follows. We first move each color ßi (for i = 1,..., / — 1) from (v, Wj+i) 
to (v,Wi). This leaves (v,wi) uncolored. In case a., we color (v,u>i) 
with color ß*. In case b., we interchange the colors a and /3* on the 
connected (path) component starting with v (so that v misses B*) 
and we color (v, w{) with color /?*. In case c, we note v and wi are in 
separate components of aßf. the connected component starting from 
v with the edge (v,Wi) ends in IUJ+I. We interchange the colors a and 
ßi on the connected (path) component starting at u>i (so that v misses 
a) and we color (v,wi) with color a. 

We construct a recoloring sequence iteratively and we start each iteration 
i by picking some ßi missed at vertex W{. Since the colors ßi,...,ßi are all 
distinct and different from a, I must be smaller than the total number of 
available colors k. The important observation, then, is that a recoloring 
sequence can be constructed if and only if at every iteration i there is some 
ßi missing at tUj. Clearly, if k > A + 1, there always is such a color so that 
G is always k edge colorable (Vizing's theorem). 

If k = A however, some vertex u>[ of degree A may have no missing colors, 
and a recoloring sequence starting with vertex w\ missing color ß\ may 
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be impossible to construct. In this case, we call the sequence of edges 
(v,W2),...,(v,wi) a fan sequence induced by ß\. While there may be dif- 
ferent fan sequences induced by ßi, we observe that no two fan sequences 
induced by different colors missed at w\ can share an edge. This is because 
if one traverses the fan sequence backwards from (v,Wi) colored with color 
ßi-i, then the sequence of edges (v,Wi-i), (V,U;J_2), ..., (u, w\), and conse- 
quently ßi-2, ...,A, is uniquely determined. So for every color missing at 
w\ for which we cannot construct a recoloring sequence, there exists at least 
one edge (v,wi) such that wi has maximum degree and such that (v,wi) 
does not belong to any fan sequence induced by another color missed at w\ 

This argument implies that we are able to A edge color G if G — (v,w) has 
a A edge coloring such that the number of colors missing at w is greater 
than the number of neighbors of v with maximum degree. This observation 
is exactly Vizing's adjacency lemma: 

Lemma 4 (Vizing's Adjacency Lemma) Let G = (V, E) be a simple 
graph of maximum degree A such that G — (v,w) is A edge colorable, for 
some edge (v, w) 6 E. If 

d(w) + \{x eV : (x, v) € E and d(x) = A}| < A + 1 

then G is also A edge colorable. 

The algorithm we described extends a k edge coloring of G — (v, w) to a k 
edge coloring of G in 0(n3) time. We actually do a bit of extra work: 0(n2) 
time suffices. Thus, a graph can be k edge colored using Fournier's algorithm 
in time 0(n4). We will also use the multigraph version of Vizing's adjacency 
lemma, along with the corresponding 0{nA) edge coloring algorithm: 

Lemma 5 (Vizing's Adjacency Lemma, for multigraphs) Let G = 
(V, E) be a multigraph of maximum degree A and multiplicity (i such that 
G — (v,w) is A edge colorable, for some edge (v,w) € E. If 

d{w) + ]T (i(v, x) < A + 1 
xex 

where X = {x € N(v) : d(x) > A — /J,(V,X)}, then G is also A edge colorable. 
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1.3.2    Algorithms and complexity 

We give some standard terminology for classifying problems by their under- 
lying complexity (much more detail can be found in [GJ79, Pap94, Sip96]). 
We consider only decision problems, i.e. problems that can be phrased 
as a question with a positive or negative answer. For example, the perfect 
matching problem can be phrased as: "Does G contain a perfect match- 
ing?", while the the edge coloring problem for simple graphs can be stated 
as: "Does G permit a A edge coloring?". An optimization problem can be 
reduced to a decision problem using binary search. For example, finding a 
maximum matching in a graph G can be reduced to the problem: "Does G 
contain a matching of size fc?". 

The class of problems solvable in time that is bounded by a polynomial with 
respect to the input size is denoted by V. A problem is in the set J\fV if for 
every input that has a positive answer there is a certificate from which the 
correctness of the answer can be derived in polynomial time (more concisely, 
a em good certificate). The perfect matching problem is in MV since a per- 
fect matching is a good certificate. The edge coloring problem also belongs 
to AfV, since a A edge coloring of an input graph G is good certificate. Most 
other combinatorial optimization problems are also in NV, which trivially 
contains V. While it is an open question whether the containment is proper, 
it is widely believed that it is. 

AfP-complete problems are the hardest problems in AfV: if one AfP-complete 
can be solved in polynomial time, then then every A/'P-complete problem can 
be solved in polynomial time. The edge coloring problem is jVP-complete 
as shown by Holyer [Hol81] while the maximum matching problem (and 
consequently the perfect matching problem) is not (assuming V 7^ MV) by 
Edmonds' polynomial time maximum matching algorithm [Edm65b]. 

A problem is in co-AfV if, for every input that has a negative answer, there 
is a good certificate (i.e. a certificate from which the correctness of the 
negative answer can be deduced in polynomial time). A problem in V is 
trivially in co-MV because we can check a negative answer by simply solving 
the problem using a polynomial time algorithm. More generally, a problem 
in J\fVn co-AfV has good certificates for both positive and negative answers. 
The perfect matching problem is in co-MV because of the following seminal 
result: 

Theorem 6 (Tutte's theorem) [Tut47j A graph G =  (V,E)  does not 
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contain a perfect matching if and only if there exists S C  V such that 
o{G -S)> \S\ 

where o(G — S) is the number of odd connected components of G — S. Be- 
cause Tutte's theorem gives good certificates for both positive and negative 
answers, it is called a good characterization. 

It is unknown whether MV = co-MV. If the answer is negative (as it is 
believed to be), no AfP-complete problem can have a good characterization. 
For example, an overfull subgraph of maximum degree A(G) is a certificate 
for a graph not being A edge colorable, but there exist graphs that are not 
A edge colorable which have no such overfull subgraph. So, this does not 
put edge coloring into co- MV. However, an overfull subgraph of maximum 
degree A(G) is a good certificate for many important classes of graphs. 
This thesis explores, among other things, the classes of graphs that accept 
an overfull subgraph as a good certificate for a negative answer to an edge 
coloring problem. 

We remark that in the above discussion, strict guarantees on performance, 
such as worst-case running time and determinism, are assumed. Other com- 
puting performance paradigms, with more tolerant requirements, have been 
proposed and used. In 1.3.4 we will discuss the uses of randomization in the 
design and analysis of algorithms. 

1.3.3    Polyhedral combinatorics 

We discuss here some of the polyhedral combinatorics issues that this thesis 
addresses. For an in-depth overview of polyhedral combinatorics, see [Sch86, 
CCPS98]. 

We recall from the introductory section 1.1, the definition of the fractional 
chromatic index using the following linear program: 

X*(G) = min J2 VM (1-4) 
MEM 

subject to: 

(i)    ^2   VM = 1, for all e E E, 
AieMe 
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(ii) VM > 0, for all M G M, 

where M{G) (or simply M) is the set of all matchings of G and Me{G) (or 
simply Me) is the set of all matchings of G that contain the edge e G E(G). 
The dual of this LP is given by: 

x*(G) = maxJ>e (1.5) 

subject to: 

(i)  Yl Xe - X' for a11 M G •M' 
(ii) xe > 0, for all e G £ 

Note that the dual LP may have exponentially many constraints (one for 
each matching). However, a candidate solution to the dual can be seen as 
an assignment of weights to the edges and a violated constraint (if any) can 
be found by solving a maximum weighted matching problem. It follows that 
X*(G) can be computed in polynomial time using the ellipsoid method (see 
[Kha79]). 

For our purposes, the heavy handed ellipsoid method is not really necessary. 
We describe a strictly combinatorial approach for simple graphs that allows 
us to compute x*{G) in polynomial time. 

In order to obtain a formula for the fractional chromatic index, we use Ed- 
monds' characterization of the matching polytope [Edm65a]: given a graph 
G, the matching polytope M(G) is the set of convex combinations of char- 
acteristic vectors (in {0,1}IEI) of the matchings of G. Edmonds has shown 
that M(G) is defined by: 

(i) x{S(v)) < 1, for all v G V, 

(ii) x(E(H)) < \{\H\ - 1), for all H C V, \H\ > 3 and odd, 

(iii) xe > 0, for all e e E. 

where a; is a vector in R)E\, S(V) is the set of edges incident to v and E(H) 
is the set of edges induced by vertices in H. Edmonds' characterization of 
the matching polytope yields a formula for x* (see [Sey79], [LP86]): 
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X*(G) = max{A(G),maxS^} 
H€n   \Jtl   — 1 

where 'H is the set of all subgraphs of G with an odd number of 3 or more 
vertices. 

Proof: Let %M € {0,1}\E\ be the characteristic vector of matching M, 
for every M £ M, and let iß be the vector of all ones. We observe that 
Y1MI=M 

WM
 
= a if and only ^M£^, ^^M is a convex combination of match- 

ings. Further £MeA/fe wM = 1 is equivalent to Y,ueMe ^ = a' Thus we 

obtain the following fact: there exists {WM}M£M satisfying the linear pro- 
gram 1.4 if and only if ^iß is in the matching poly tope. 

Using Edmonds' characterization of the matching polytope, we see that G 
has a fractional coloring {WM}M^M with YliMeM WM = a iff 

f    *      rv 

for all v E V and 

a 
ueN(v) 

veH 

1 (1.7) 

for all H C V such that |H| = 2k + 1 for some integer fc > 1. In other 
words, a > A and a > maxfl£% Igl-i • So the fractional chromatic in- 
dex of G is the minimum a satisfying these two inequalities, i.e.    it is 
max{A,maxHeW2g[^}.      D 

In the case of a simple graph G, we can reduce the problem of comput- 
ing x*(G) to the problem of determining whether G contains an overfull 
subgraph H of maximum degree A using binary search. (We recall that 
a graph H is overfull if \E(H)\ > A(H)1-^.) If G is A-regular, this is 
equivalent to determining if V(G) has a partition (Vi, V2) so that |Vi| and 
IV2I are both odd (an odd cutset) and |JE7(Vi, T^)| < A. More generally, to 
determine if G has an overfull subraph of maximum degree A, we need to 
check whether an auxiliary graph contains an odd cutset with fewer than A 
edges. We obtain this auxiliary graph G* by adding an extra vertex v* to 
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V and additional edges to E that are incident to v* so that each vertex in 
V has degree A in G*. If |V(G*)| is even, we label all vertices of G* odd, 
otherwise we label v* even and the remaining vertices odd; note that the 
number of odd-labeled vertices in G* is even. We call a partition (Vi, V2) 
of V(G*) and odd cutset if V\ and Vi contain odd numbers of odd-labeled 
vertices. We observe that if H is a subset of V(G*) — v* of odd cardinality 
greater than 1, then H induces an overfull subgraph in G of maximum de- 
gree A if and only if \E(H, V(G*) — H)\ is less than A. So, we will be done 
if we can find the minimum odd cutset in G*, i.e. the odd cutset (Vi, V2) 
minimizing \E{V\, V^)!- Padberg and Rao provide an algorithm to compute, 
in 0(n4) time, the minimum odd cutset, by modifying Gomory and Hu's 
[GH61] algorithm for finding the minimum cutset between a set of terminal 
nodes (odd-labeled vertices in our terminology). 

For completeness, we summarize Padberg and Rao's recursive procedure to 
determine the minimum odd cutset of G*. We first compute the minimum 
cutset (Vi, Vi) of G* using a standard maximum flow - minimum cut network 
flow algorithm. If (VL, V2) is an odd cutset, we are done. Otherwise, it can 
be shown that there is a minimum odd cutset (V{, V?) of G* such that either 
V{ C VL or V2' C Vi. So, we only need to recursively determine the minimum 
odd cutset of the subgraphs of G* induced by Vi+vi and V2+V1, where v\ and 
V2 are vertices obtained by identifying all vertices in Vi and Vjj, respectively 
(we let vi and vi be even-labeled). Since the recursion tree contains at most 
n — 1 vertices, and at each node of the tree, we only need to solve a network 
flow problem (in time 0(n3), see [LP86]), the total running time is 0(n4). 
We note that the maximum flow - minimum cut problem is equivalent to the 
problem of finding a maximum matching in a bipartite graph. This problem 
in turn is the core of the algorithm for edge coloring bipartite graphs (see e.g. 
[LP86]). Thus, in a certain sense, Padberg and Rao's algorithm computes 
X*(G) by repeatedly computing x' f°r some bipartite graph. 

1.3.4    Probability 

A finite probability space consists of a finite set fi (the domain) and a func- 
tion Pr : U -> [0,1] (the probability distribution), such'that J2xeft ^T(x) = 

1. A probability space represents a random experiment where we choose a 
member of 0 at random and Pr(x) is the probability that x is chosen. For 
any X C 0, we define Pr(X) = Y^xex PrW>tiie probability that a member 
of X is chosen. 
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The most common probability distribution, and the only one we will be 
using in this thesis, is the uniform probability distribution which is defined 
as Pr(x) = 1/|0|: a uniformly chosen member of Q, is a random choice where 
each member is equally likely. 

A random variable X is a variable defined as a function of the domain of 
a probability space. A random event is a random variable whose value can 
be true or false. The subadditivity of probabilities property states that for 
events Ei, ...,En, 

Pr(E1V...VEn)<Y,P*(Ei) 

Two random events X and Y are independent if Pr(AAB) = Pv(A) x Pr(jB). 
The random events Xi,...,Xn are mutually independent if Pr(Xjx A ... A 
Xik) = Prp^J x ... x Pr(Xik) for every subset {«i,«2,-,«*} of {1,2, ...,n}. 

The expected value (or simply the mean) of a random variable X is defined 
as Exp(X) = X^sen X(s) Pr(s). In order to show concentration of a random 
variable around its mean we will use: 

Theorem 7 (The Chernoff Bound) LetXi,...,Xi,...,Xn be mutually in- 
dependent random variables with Pr(Xj = +1) = Pr(Xj = —1) = ^ and let 
Sn — X\ + ... + Xn. For any a > 0, 

Pr(\Sn\ > a) < 2ez 

Finally, we will use the standard notation Gn>p to denote the random graph 

with vertex set Vn = {1,2, ...,n} in which each one of the I   _   I possible 

edges occurs independently with probability p. 

We finish now the discussion on algorithms and complexity started earlier. 
Once we introduce probability in computation, we have at our disposal not 
only powerful probabilistic tools, but also the flexibility in setting more 
tolerant performance guarantees. By accepting that an algorithm may fail 
with small probability (failure can mean returning an incorrect answer or 
not stopping within a set time), we hope that we can show that larger classes 
of problems can be computed efficiently. 
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One approach to using probability in computation is to allow a coin to 
be flipped at each step of an algorithm and choose one of two possible 
steps depending on the outcome of the flip. The class TZV includes all 
problems that, with a small probability of failure (returning NO if the correct 
answer is YES), can be solved in polynomial time with such a procedure. 
(Precise definitions of TZV and other complexity classes based on randomized 
algorithms can be found in [MR95].) It is easy to see that TZV C J\fV and it 
is not known whether the containment is strict. It is believed however that 
TZV 7^ MV so it is unlikely that there exists a randomized polynomial time 
algorithm for the edge coloring problem, and, for that matter, for any other 
A/'P-complete problem. 

A different approach to relaxing the performance guarantees of a determin- 
istic algorithm is to allow the running times to be super-polynomial for only 
a small number of inputs. More precisely, we require the running time to 
be polynomial on an average input only, assuming a specified probabilistic 
distribution of the inputs. Expected time algorithms typically involve the 
application of different procedures in succession: we apply a procedure to 
an input if the previous procedures fail on that input. We note that an 
algorithm has polynomial expected time if the running time of a procedure 
multiplied by the probability that previous procedures failed on that input 
is a polynomial in the size of the input. Examples of graph problems for 
which expected polynomial time algorithms are known include vertex col- 
oring [DF89] and the Hamilton cycle problem [BFF87]. A recent survey by 
Frieze and McDiarmid [FM97] describes the state of the art in the area of 
average case analysis of algorithms. 

We lastly discuss two results directly relevant to our objectives. Erdös and 
Wilson [EW77] showed that the proportion of labelled graphs on n vertices 
with more than one vertex of maximum degree is at most 0(nlogn)~2. It 
follows from Fournier's algorithm that a random graph Gn 1 can be colored 

with A colors with probability of failure at most 0(nlogn)~2. In 1986, 
Frieze, Jackson, McDiarmid and Reed [FJMR88] presented a 0(nA) time 
algorithm that optimally colors the edges of Gn 1 with probability of failure 

e-cnlogn £or any c < |. They observed that if there is a procedure that 
optimally edge-colors all graphs of order n in worst-case time eanlogn for 
some a < |, it could be the second step of a polynomial expected time al- 
gorithm, with their algorithm being the first step. Their algorithm is in fact 
the first in the sequence of procedures that are part of our algorithm FAST 
COLOUR that optimally colors the edges of a simple graph in polynomial 
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time on average. 



Chapter 2 

The results 

2.1    Graphs of high degree 

Our main result is a proof of a weakening of Hilton's Conjecture for graphs 
with sufficiently large degree. This result allows us to develop an algorithm 
for edge coloring which runs in polynomial time on average. The precise 
result we prove is: 

Theorem 8 (main theorem) There exists Ao such that for all simple 
graphs G = (V,E) with maximum degree A > Ao and n = |V| < 6A, 
one of the following is true: 

(i) G contains a subgraph H such that ö(H) > A — A79/80 and either: 

H is bipartite, or 

\V-H\>A- 8A159/160 

(ii) G contains an overfull subgraph H of maximum degree A, 

(iii) G is A edge colorable. 

Furthermore, there is a 0(nA) randomized procedure and a 0(2") determin- 
istic procedure, both of which will output either a A edge coloring of G or a 
subgraph H of G that satisfies (i). 

21 
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The lower bound on the maximum vertex degree Ao satisfies a number of 
inequalities that appear throughout this paper. We also remark that, in this 
thesis, we sacrifice sharper bounds for clarity of presentation. 

Note that if we could drop condition (i) then the main theorem would 
imply Hilton's conjecture asymptotically. We do obtain, as a corollary to 
the main theorem, the following asymptotic version of Hilton's conjecture 
with | replaced by ^7 (where e > 0): 

Corollary 9 For every e > 0, there is some A\ such that for all simple 
graphs G = (V,E) with maximum degree A > Ai and A > gz^l^l-' 

X'(G) = \x*(G)} 

Proof: Given e, let G = (V, E) be a graph of maximum degree A > Ai = 
max{A0,9e_1/i60} such fa&t \V\ < (2 - e)A. If G contains a subgraph 
H which satisfies (i) in the main theorem, then either H is bipartite and 
|V| > \H\ > 2A - 2A159/160 or \V\ > \H\ + \V - H\ > 2A - 9A159/160. 
Since \V\ < 2A - eA, it follows that e < 9A"1/160, a contradiction. So 
either G contains an overfull subgraph of maximum degree A or G is A 
edge colorable.      □ 

Because A-regular graphs with |V| = 2k and k < A can not contain an 
overfull subgraph of maximum degree A, our corollary is equivalent to the 
result announced by R. Häggkvist: for any e > 0 there exists N > 0 so 
that every A-regular graph G is 1-factorizable if G has an even number of 
vertices greater than N and A > {\ + e)\V\. 

The proof of our main theorem is long and complicated; its details comprise 
chapters 3 - 6 of this thesis. In this chapter, we content ourselves with 
sketching the proof and explaining why we need condition (i). We do this 
in section 2.4. To ease our exposition, we first present, in sections 2.3 and 
2.5, the complete proof of the following special case of the main theorem: 

Theorem 10 (regular theorem) There exists Ao such that for all simple 
regular graphs G = (V,E) of degree A > Ao with \V\ = 2k where k < A, 
one of the following is true: 

(i) G contains a subgraph H such that 5(H) > A — A79/80 and either: 
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H is bipartite, or 

\V-H\>A- 2A79/80 

(ii) G is A edge colorable. 

Furthermore, there is a 0(nA) randomized procedure and a 0(2n) determin- 
istic procedure, both of which will output either a A edge coloring of G or a 
subgraph H of G that satisfies (i). 

Remark: a A-regular graph G — (V,E) with \V\ = 2k and k < A cannot 
possibly contain an overfull subgraph of maximum degree A. 

Thus, our description of the proof of the main theorem starts in section 2.3 
and occupies the remainder of the thesis. Before beginning this discussion, 
we digress briefly to present a deterministic edge coloring algorithm which 
runs in polynomial time on average. 

2.2    Edge coloring quickly, on average 

We present FAST COLOUR, a deterministic algorithm for optimally color- 
ing the edges of any simple graph. We will prove that the expected running 
time of FAST COLOUR on an input graph with n vertices is a polynomial 
in n, assuming a uniform distribution of graphs with n vertices. 

Our algorithm applies a number of procedures in succession. Most of the pro- 
cedures we use we have already mentioned. As a last resort we use dynamic 
programming. We begin our discussion by presenting the dynamic program- 
ming procedures we need. We assume that the input graph G = (V, E) is 
the random graph Gn i where n— |F|. In other words, every labeled graph 

with n vertices is equally likely. (While the uniform distribution of labeled 
graphs does not correspond exactly to the uniform distribution of unlabeled 
graphs, the result easily extends to the second distribution.) 

In describing the three dynamic programming procedures we use, we will 
use the fact that a graph with r vertices contains fewer than r!| matchings, 
for we can specify a matching by first specifying an order on the vertices 
which breaks them into pairs and then letting the matching consist of the 
first j of these pairs for some j < |. 

We will use the following dynamic programming algorithm: 
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Standard dynamic programming We compute x'{H) for each subgraph 
H of G, considering subgraphs with fewer edges earlier. Observe that 
for each H C G (with E{H) / 0), x'(H) = 1 + min{x'(H - M)\M G 
M. and M is non-empty}. So, we find an optimal edge coloring of H 
by choosing some M attaining this minimum and adding M to an 
optimal colouring of H — M. 

Since G has 2^E<^G^ subgraphs H and we spend at most 0(n\^) time comput- 
ing x'(-ff), we can compute an optimal edge coloring of G in 2l-E(G)l+°(ri!og") 
time. 

In addition to this standard dynamic programming procedure, we will also 
use another, more restricted, version. Given a list of forbidden colors for 
each vertex of G, we will need to determine if G has a A edge coloring such 
that no edge incident to a vertex v is colored with a color forbidden on v, 
and furthermore, we need to find such a colouring if one exists. In order 
to describe the restricted dynamic programming procedure we define some 
terminology. An i-proper matching is a matching no edge of which is 
incident to a vertex on which i is forbidden. A proper edge colouring is 
one in which for each i, the edges of colour i form an «'-proper matching. 

Restricted dynamic programming For each subgraph H of G and each 
subset S of {1,..., A} (considering subgraphs H with fewer edges and 
subsets S of smaller cardinality earlier), we determine if H has a proper 
edge coloring using the colors of S. This will be true if and only if for 
some j in S and some ^-proper matching M, H — M has a proper edge 
coloring using the colors in S — j. If such j and M exist, we find the 
proper edge coloring of H using the colors from S by adding M to the 
proper edge coloring of H — M using the colors in S — j. 

Since G has 2^E^G^ subgraphs, since there are at most 2n subsets of {1,..., A} 
and since there are at most 0(n\^) matchings in G, we compute an optimal 
edge coloring of G in 2l£(G)!+°(wl°s") time. 

We will use the restricted dynamic programming procedure if G permits a 
partition of its vertex set into A and B such that \E(A, B)\ is "small" (which 
we specify below) as follows: 

Extended dynamic programming For each coloring of E(A, B), we de- 
termine, separately for A and B, whether the coloring extends to 
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E(A) + E(A, B) (resp. E(B) + E(A, B)) using the restricted dynamic 
programming procedure. 

Note that there are at most A^A'B^ < 2^A'B^lo^n edge colorings of 
E(A,B).   The deterministic running time of this last procedure is then 
2\E(A)\+O(\E(A,B)\l0gn) + 2\E(B)\+0(\E(A,B)\\ogn) _ 

The FAST COLOUR algorithm 

We first attempt the following: 

1. We apply the edge-coloring procedure by Frieze, Jackson, McDiarmid 
and Reed [FJMR88] to optimally color the edges of G with A colors. 

As noted in the preliminaries (section 1.3), the running time of this proce- 
dure is 0(n4) and the probability of failure on an input graph G is e~c"logn 

for some c < |. If we fail in step 1, we move to the following step: 

2. We apply the algorithm by Padberg and Rao [PR82] to determine whether 
G contains an overfull subgraph of maximum degree A. If G does con- 
tain such a subgraph, we apply the edge coloring algorithm by Fournier 
[Fou73] to optimally color the edges of. G with A + 1 colors. 

The deterministic running time of step 2 is 0(n4). If G fails in step 1 and 
does not contain an overfull subgraph of maximum degree A, we apply the 
algorithm implied by our main theorem as follows: 

3. If |V| < 6A, we apply our edge-coloring procedure to optimally color the 
edges of G with A colors or to find a subgraph H of G of minimum 
degree 8(H) > A - A79/80 such that either H is bipartite or \V-H\> 
A-8A159/160. 

By the main theorem, the deterministic running time of the third step is 
0(2"). However, the expected running time of the third step on the random 
graph G is 0{2n

e-
cnl°zn) 

= o(l). 

If we fail to optimally color the edges of G in steps 1, 2 and 3, then one of 
the following must be true: 

(a) n = \V\> 6A, 
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(b) G contains a subgraph H of G of minimum degree 8(H) > A — A79/80 

such that \V - H\ > A - 8A159/160. 

(c) G contains a subgraph H of minimum degree 5(H) > A — A79/80 such 
that H is bipartite. 

In each one of these cases we need to apply brute force dynamic programming 
as follows: 

4. If |V| > 6A (case (a)), we just use the standard dynamic programming 
procedure. In cases (b) and (c), we set A = H and B — V — H and 
we observe that \E(A,B)\ < |^|A79/80 < 6A159/80. We simply apply 
the extended dynamic programming procedure in those cases. 

Lemma 11  The expected running time of step 4 is o(l). 

Proof:    In case (a), \E\ < j^n2.  Thus the deterministic running time is 
2 

2j2+o(n\og(n)) ky our analysis of the standard procedure. Using the Chernoff 
-n2 

bound (theorem 7), we show that Pr(|i?| < j^n2) < 2~ö~. So, the expected 
time on the random graph G in this case is o(l). 

In case (b), we show that for any fixed partition (A,B) = (H,V — H) 
of V, the expected running time on a random graph G is o(2~n). The 
lemma then follows by summing the probabilities over all 2n partitions and 
subadditivity. So, by our analysis of the extended procedure, and since 
\E(A,B)\logn < o(n2), it suffices to show : 

Pr( (b) holds for (i)ß))(2l^)l+^2) +2lß(ß)l+°("2)) = o(2~n) 

We actually show: 

Pr((b) holds for (A, B))2^A^+°^ = o(2~n) (2.1) 

The result follows by symmetry. 

Now, there are at most (|A||ß|)6Al59 8° = 2°(" ) possible sets of edges 
between A and B with less than 6A159/80 edges. The probability that 
a particular set of edges is exactly E(A,B) is 2-lAllBL    It follows that 
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Pr(\E{A,B)\ < 6A159/80) < 2-^lß!+0("2). Since \B\ > A - 8A159/160 (part 
of condition (b)) and since |-E(^4)| < Jj^4|A., equation 2.1 follows. 

In case (c), it suffices to show that for any fixed partition (X, Y, B) of 
V the expected running time on a random graph G is o(3_n) (where X 
and Y are the two sides of the bipartite graph A = H and B = V — H). 
If (c) holds for this partition (but not (b)), then dy(x) > A - A79/80 

for every x G X and dx(y) > A — A79/80 for every y E Y. It follows 
that \E(A)\ < \X\\Y\ + \E(X)\ + \E(Y)\ < \X\\Y\ + 6A159/80 and also 
\E(A)\ < |X|A+6A159/80. In addition, |Y|A > \E{X,Y)\ > |X|(A-A79/80) 
and, using a symmetric argument, we obtain ||Y"| — \X\\ < 3A79/80. So, 
|X|, |F| < 3A + 2A79/80. Finally, since |B| < A - 8A159/160 then \E{B)\ < 
\E(A)\. Thus, by our analysis of the extended procedure it suffices to show: 

Pr((c) holds for (X, Y, B))2^A^+0^ = o(3"n) (2.2) 

Given X, there are less than (|X||X|)4Al59/8° < 28nl59/8°losn possible sets 
of edges in X with less than (3A + 2A79/80)A79/80 < 4A159/80 edges. The 

probability that a particular set of edges in X is exactly E(X) is 2~ ^ 2). By a 
symmetric argument on Y and because X and Y are disjoint, it follows that 
Vx{\E{X)\ < 4A159/80 and \E{Y)\ < 4A159/80) < 2-(2H2)+8"159/80i°s" < 
2_|X|2+9ni59/8olog„_  gince I^^I < |X|A + 6Ai59/80) equation 2.2 follows, 

unless \X\ < A + A159/160 (and |F| < A + A159/160). 

If \X\ < A + A159/160 and \Y\ < A + A159/160, then (A - A79/80)2 < 
\E{X, Y)\ < A(A+A159/160 which implies that there are less than 2°("2) pos- 
sible sets of edges between X and Y of cardinality greater than (A—A79/80)2. 
The probability that a particular set of edges between X and Y is exactly 
E{X,Y) is 2-lxHyl. So, PT(\E(X,Y)\ > (A - A79/80)2 < 2-WI+°("2) 
and Pv(\E(X)\ < 4A159/80 and \E(Y)\ < 4A159/80 and \E{X,Y)\ > (A - 
A79/80)2) < 2-|A-|2-|X||y|+o(n2)) and Qnce agam equation 2.2 follows.        D 

2.3    The regular case 

We give a short and complete proof of the main theorem in the special case 
of A-regular simple graphs with Ik vertices for some k < A. More precisely, 
we prove the following: 
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Theorem 12 (regular theorem) There exists AQ such that for all simple 
regular graphs G = (V,E) of degree A > A0 and \V\ = Ik for some k < A, 
one of the following is true: 

(i) G contains a subgraph H such that 5(H) > A - A79/80 and either: 

H is bipartite, or 

\V-H\>A- 2A79/80 

(ii) G is A edge colorable. 

Furthermore, there is a 0(n4) randomized procedure and a 0(2n) determin- 
istic procedure, both of which will output either a A edge coloring of G or a 
subgraph H of G that satisfies (i). 

In order to prove this theorem, we present an 0(n4) algorithm that attempts 
to color with A colors the edges of a simple regular graph G = (V, E) of 
degree A > A0 and |V| = 2k for some k < A. Along with the graph, our 
edge coloring algorithm requires that a special partition (Bi,B2) of V be 
given as part of the input. This partition has the property that certain sets 
of vertices split about evenly between By and B2. Let us define a split 
formally: 

Definition 1 Let B\ and B2 be a partition ofV. A set H C V splits within 
d if \\H n Bi\ - \H n B2\\ <d. 

A partition (Bi,B2) of V is called a split partition if the following are 
satisfied: 

(a) |5i| = \B2\, 

(b) For every v in V and for all subsets X and Y of V of size less than 
20 log A the following sets split within ^A11/20: 

N(v),N(X),N(v)nN{X),{w E N(X) : dN{Y)(w) > A - 7A39/40} 

In particular, the degrees "split". Also note that condition (a) implies 
|.E(.Bi)| = \E(B2)\. We will show in section 2.5 that for a suitably defined 
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random split, the desired properties hold with positive probability. We will 
also give a straightforward linear time randomized procedure that constructs 
such a split. We assume from here on that a split partition (B\,B2) of V is 
given. 

The goal of our edge coloring algorithm is to construct disjoint perfect 
matchings Mi,...,M& such that H = G — \j\=lMi is a bipartite reduction 
of G contained in (Bi,B2) (we define k below). Given such matchings, one 
can color the edges of G with A colors as follows: we use A — k colors 
to color the edges of the bipartite graph H (using the algorithm derived 
from König's theorem) and then we assign the remaining k colors to the 
disjoint matchings Mi,...,Mfc. We will attempt to construct these match- 
ings in two coloring passes. If we fail to construct the desired matchings, 
we will show the existence of, and construct, sets X and Y such that either 
X C Bu Y C B2 and \BX\ - \X\ > ±A - A19/20, or X C B2, Y C Bu 

\B2\ - \X\ > iA - A19/20, and, in either case, \Y\ < \X\ + A19/20 and 

V«6I: dY(v) > JA - A19/20 

We call such a pair (X, Y) a fail pair in the split partition (Bi,B2). In sec- 
tion 2.5 we will present a procedure that, given a fail pair (X, Y), constructs 
a subgraph H of G that satisfies condition (i) of the regular theorem. 

2.3.1    The first coloring pass 

In the first coloring pass, we attempt to construct Ai = \\A+A3/4 log(A)] = 
|A + 5 disjoint perfect matchings Mi,..., MAJ such that if F = G — M\ — 
... — MAJ then the reject subgraphs R\ = F D B\ and R2 = F D B2 have 
maximum degree at most A9/10 and \E(Ri)\ = \E(R2)\ < |A19/10. We split 
the construction of the matchings into the initial coloring and the patching 
step: 

The initial coloring 

We start by constructing an initial coloring of E(B\) U E(B2), or, in other 
words, initial matchings M[, ...,M'Ai. In order to do this we first describe a 
property that we require from these initial disjoint matchings. 

We will say that disjoint matchings Mi,...,Mfc covering the edges of some 
subgraph H of G (i.e.   ufL^Mj = E{H)) are balanced in H if for any 
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1 < i < j < k: 

0 < \Mj H E(H)\ - \Mi f) E(H)\ <1 (2.3) 

Let M and M' be disjoint matchings in a graph H such that \M\ > \M'\. 
We will use the following procedure to modify M and M' so \M\ is decreased 
by one and \M'\ is increased by one, without modifying M U M', as follows: 

Balancing step: We consider the connected components of M U M' con- 
sisting of cycles and paths whose edges alternate between edges in M 
and edges in M'. We observe that in all alternating cycles and in all 
even length alternating paths, half the edges belong to M while the 
other half belongs to M'. In an odd length alternating path P, how- 
ever, \\M n P\ - \M' n P|| = 1. We pick a path connected component 
P with one more edge in M than in M'; such a path must exist since 
\M\ > \M'\ (see figure 2.1). We switch the color of each edge in P. 

Figure 2.1: Connected components (cycles, even length and odd length 
paths) of subgraph defined by matchings M (full edges) and M' (dashed 
edges) with \M\ - \M'\ - 2 

The balancing procedure 

We modify any disjoint matchings Mi,...,Mk covering E(H) so that 
inequalities 2.3 are satisfied for all 1 < i < j < k as follows: 

1. We recursively apply the balancing procedure to matchings M = 
Mi and M' = Mj with largest and smallest number of edges, until 
all matchings have / or / + 1 edges for some integer /. 
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Note that, in each iteration, we either decrease by one the difference 
between the largest and smallest matchings or we decrease by at least 
one the number of largest and smallest matchings. Thus, no more than 
0(n2) iterations are required. 

2. We reorder the matchings so that all matchings of size I + 1 follow 
the matchings of size /. 

We are ready now to describe the initial coloring. We construct disjoint 
matchings M[,...,M'Ai balanced in Bx and in B2 such that U^M- = 
E{B1)UE(B2) as follows: 

1.1 We color E(B\) using Ai (greater than A(J3i), A(£?2)) colors by apply- 
ing Fournier's algorithm to obtain initial disjoint matchings Ml,M%, ■■-, M\ 
covering E{B{); similarly we obtain disjoint matchings M\, Mf,..., M\ 
covering E(B2). 

1.2 We modify the matchings obtained in 1.1 so Ml,M%, ■■-,M\   are bal- 
anced in Bi and Mf,M$, ...,M\   are balanced in B2. 

1.3 We set M[ = M\ U Mf for every % = 1,..., Ai. 

Note that \M[^E{BX)\ = \M[t\E{B2)\ for every % = 1,..., Ai since \E{BX)\ = 
\E(B2)\. Let n(Bi,i) and n(Z?2,ä) be the number of vertices in B\ and B2, 
respectively, missed by M/, for i = 1,..., Ai. Then, 

Claim 1 n(Bui) = n(B2,i) < 36 for i = 1,..., Ai. 

Proof: Clearly, it is enough to show n(Bi,i) < 38 for every i = 1,..., Ai. 
By the definition of a split partition no vertex will be missed by more than 
|<5 matchings M[,...,M'A. Since the matchings are balanced in Bi, the 
difference between the number of vertices in B\ missed by any two matchings 
M[ and M'j is at most 2. Since \Bi\ is at most A, it follows that 

n(Si,*) = (Ai)-1(A|<J) + 2<3* 

for every i = 1,..., Ai.      D 
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The patching 

Once we obtain an initial coloring M{,..., M'Ai, we recursively construct the 
perfect matchings Mj by augmenting M[ along vertex disjoint patches in 
F = G - Mi - ... - Mj_i; a patch is a Mj'-augmenting path whose edges 
alternate between edges in the bipartition and edges in the matching M;. 
We will actually insist that every patch has an endpoint in B\ and the other 
in B2. The edges of M- on the patch that get uncolored by the augmentation 
are added to reject graphs R\ and R2. If we are not successful in constructing 
a patch between two vertices missed by M[, we will show that there exists 
a fail pair (X,Y) in {BUB2). 

Let xi,...,xs and y\,...,ys be the vertices in B\ and B2, respectively, that 
are missed by ML Note that s = n(Bi,i) < 38. For r = 1,..., s, we attempt 
to construct a patch Pr in F from rcr to yr, vertex disjoint from Pi,..., Pr-i, 
as follows: 

2.1 If there is an edge in F between xr and yr, we set Pr to consist of 
(xr,yr) only. Otherwise, we define a vertex v G B to be unavailable 
if it belongs to a patch constructed in the previous [A1/10] matchings 
(Mj-i^.^M^i^i/io-i) or if it belongs to one of Pi, ...,Pr_i. We call a 
vertex v available if v is not unavailable and is not matched in M[ 
with an unavailable vertex. 

2.2 Let Y1 be the set of all available vertices in B2 n NF(xr) and let Y2 = 
{v G B2 : (u,u) G M- and it G Y"1}. Similarly, let X1 be the set of 
all available vertices in B\ n NF(yr) and let I2 = {« £ 5] : («,«) G 
Mj' and it G -X"1}. If there is an edge in F between a vertex vx in X2 

and a vertex vy in Y2 we let the patch Pr be defined by the sequence 
of vertices xr,ux,vx,vy,uy,yr where (ux,vx) and (uy,vy) are edges of 
ML % • 

If for every i = 1,..., Ai, we successfully construct and augment the dis- 
joint patches between pairs of vertices missed by M[, we do obtain perfect 
matchings Mi, ..^MAJ- Note that no vertex will be incident to more than 
-Ax- < A9/10 rejected edges. Every patch contains the same number of 

edges in Pi and in B2 so that |P(Pi)| = \E{R2)\ < 3<5AX < |A19/10, for A 
large enough. 

2.3 If there is no edge between X2 and Y2, we set X = X2 and Y - B2- Y2. 
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I 
yi 

y2 

Figure 2.2: Patches of length 1 and 5 

Claim 2 (X,Y) is a fail pair in the split partition (Bi,B2). 

Before we prove this claim, we remark that dß2(v) > ^A — 2A9//1° for every 
v € Bi and d^v) > JjA - 2A9/10 for every v G B2 since dF(v) = A - i 
after iteration i, and A(Ri), A(i?2) are less than A9/10. 

Proof:     We first count the number of vertices in J3i (#2) that are not 
available. At most 3 vertices in B\ (£2) belong to a specific patch. Since we 
construct no more than 36 patches in any one matching, the total number 
of vertices that are not available in iteration i is at most 2([A1/10]3<5 < 
1 A 19/20 
4 

To prove the claim, we must show: 

(i) |Y|<|X| + A19/20 

We note that \X\ = \Xl\ > dF
Bi{yr) > ±A - 2A9/10 - |A19/20 > 

iA-iA19/20. Similarly \Y2\ > iA-^A19/20. Then, \Y\ = \B2-Y2\ < 
A - iA + ^A9/10 < |X| + A19/20. 

(ii) dY{v) >hA- A19/20 for every v G X: 
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Since dy2 (v) = 0 for every v G X, it follows that dy (v) > dg _y2 (v) = 

dF
B2 (v) > iA - 2A9/10 > iA - A9/10. 

(iii) l^l-IX^iA-A19/20 

Since d^(u) = 0 for any v £ Y2, it follows that \B\ — X\ > dBi_x(v) = 
dF

Bi (v) >^A- 2A9/10 > iA - A19/20. 

D 

2.3.2    The second coloring pass 

After the first coloring pass, we obtain the A-regular reduction F of G that 
contains the reject graphs R\ — B\ n F and R2 = B2 0 F of maximum 
degree A9/10 such that |£?(i?i)| = \E(R2)\ < ±A19/10. Recall that d%2(v) > 
1A - 2A9/10 for every v E Bx and d^ (v) > ±A - 2A9/10 for every u£52. 

We now attempt to construct the remaining A2 = [iA19/20] disjoint perfect 

+i- matchings MAl+i, -, MAI+A2 in F such that E(Ri)öE(R2) C U^MA! 

If successful, H = F — U^MAJ+J is clearly bipartite reduction of G.   If 
we fail in constructing these matchings, we will show that there exists a fail 
pair (X,Y) in the split partition (B\,B2). 

The initial coloring 

We construct the initial matchings MAi+1, •••)-^AI+A2' balanced in £?i and 
in B2, such that U^M^+j = #(#1) U -E(-R2)- We construct these initial 
matchings as we did in the first coloring pass. We note that \M'Ai+i D 

£(Äi)| = \M'Ai+iC\E{R2)\ < iA19/20 for every i = 1,..., A2 since \EiRt)] = 
\E(R2)\ < ±A19/10. 

The patching 

We recursively construct M/\1+i by augmenting M'A +i in H = F — M^+i — 
... — M^1+(j_!) as follows: 

2.1 Let U\ and U2 be the sets of vertices missed by M'Ai+i in B\ and B2, 
respectively. Note that \U\\ = \U2\. We attempt to find a perfect 
matching M* in the bipartite graph (Ui,U2) D -H". If successful, we 
simply add M* to MAi+J- to obtain MA1+J. 
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2.2 If there is no perfect matching in (Ui,U2)DH, there must exist X C U\ 
such that \X\ > \NU2{X)\. We set Y = N^{X) U F2, where F2 is the 
set of endpoints of matching edges of M'A +i in B2. 

Claim 3 (X,Y) is a fail pair in the split partition (Bi,B2). 

Proof: Since \M'Ai+if]E(R2)\ < |A19/20, it follows that \Y\ < \X\ + \F2\ < 

\X\ + A19/20. In addition, dy(v) = df2(t>) > d%2{v) - A2 > |A - A19/20. 
Finally since \X\ > \Ny (X)\ there exist v € U2 such that d^{v) = 0. Since 
a%x (v) > 5 A - A19/20, the claim follows.      D 

2.4    Proof of the main theorem: an overview 

While far more complicated, our proof of the main theorem uses a similar 
approach as the proof of the regular theorem we just presented. We give 
the details in chapters 3, 4, 5 and 6. We describe here the difficulties we 
will encounter and the methods we will develop while extending the regular 
case proof to the main theorem; we hope the reader will thus appreciate the 
complexity of the task, understand the necessicity for this long and technical 
proof and, perhaps, become interested and motivated to read through the 
technical details! 

The main theorem generalizes the regular theorem in two ways. First, it 
applies to any simple graph G = (V, E) of maximum degree A > Ao, not 
just A-regular graphs. Second, it applies to all graphs with A > \\V\, a far 
larger proportion than the proportion of graphs satisfying A > \\V\. We 
discuss the second generalization first, as it poses no true difficulty. 

In fact, when extending the proof of the regular theorem so it holds for 
A > \\V\, the only substantial change is that we allow longer patches in 
the first coloring pass. Given two vertices x £ B\ and y 6 B2 missed by an 
initial matching M[, we will attempt to construct a patch between x and y, 
i.e. an M/-augmenting path alternating between edges in M\ and edges in 
(B\, B2), of length up to 4A1/20 +1 (see figure 2.3). If such a patch does not 
exist, we will show the existence of and construct a fail pair (X,Y) in the 
bipartition (Bi,B2); in a way, a fail pair is a bottleneck that prevents two 
vertices to be connected by a patch. We then use this fail pair to construct 
the subgraph H of G that satisfies (i) of the regular theorem. 
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Figure 2.3: A patch of length 9 connecting vertices x and y missed by an 
initial matching n E{B{) U E(B2) 

It may at first seem surprising that in extending the regular theorem to 
graphs with A > ^\V\, we did not need to add a condition forbidding G to 
contain an overfull subgraph of maximum degree A. After all, if A < \\V\ 
then G could contain an overfull subgraph H of maximum degree A and 
thus G would not be A edge colorable. In this case, however, the overfull 
subgraph H must contain a subgraph satisfying (i) of the regular theorem. 
To see this, note first that H must contain a subgraph H' of minimum degree 
A —2\/Ä. Furthermore, since G is A-regular, V — H must also be an overfull 
subgraph of maximum degree A, implying \V — H'\ > \V — H\ > A. H' 
would thus satisfy condition (i) of the regular theorem. Thus, in the regular 
case we do not need to worry about overfull subgraphs because none exist 
unless condition (i) holds. 

In a similar vein, when extending the regular theorem to non-regular graphs, 
we take advantage of the fact that if G has an overfull subgraph F, but has 
no subgraph H satisfying (i) of the main theorem, then F has a very special 
structure. To understand this, we divide the vertices of G into big and small 
vertices, i.e. into B = {v € V : d(v) > |A} and S - {v G V : d(v) < ^A}. 
Clearly, F has at most one small vertex. In fact, we can impose conditions 
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on the graph G so that F contains all but one big vertex. To do so, we note 
that by Vizing's adjacency lemma, it is enough to prove the main theorem 
for graphs G such that the following property holds for every u,v EV: 

d{u) + \{x E V : (x, v) e E and d(x) = A}\ > A + 1 

We will call a graph G Vizing if this property is satisfied for all u, v E V. We 
observe that, if G is Vizing, then (A) S is a stable set and (B) dß(v) > ^A 
for every v € B. Now suppose F is an overfull subgraph of G of maximum 
degree A and that B — F contains between 3 and 5A — 3 elements. By (B), 
each vertex in B — F sees ^A — \B — F\ vertices in B n F. Hence there 
exists (^A — I^DIS"! > A edges between F and B — F, contradicting the fact 
that F is overfull. Similar arguments show that \B — F\ ^ 2, and also that 
\B — F\ ^ 5A — 3 unless condition (i) holds. 

Now, just as the big vertices play the major role in any possible overfull 
subgraph, they also present the only real difficulty in proving the theo- 
rem. Thus, for the moment, we assume there are no small vertices. In our 
constructive proof of the main theorem, we will attempt to obtain disjoint 
matchings Mi,..., M& such that H = G — U^"*" 2Mj is a reduction of G that 
is easily A(H) edge colorable (H will usually be a bipartite graph). The 
procedure is quite similar to that used in the regular case: we obtain each 
Mi by augmenting along patches constructed bewteen some of the vertices 
missed by an initial matching M[. A major difference from the regular case 
is that the matchings Mi,...,Mfc will NOT necessarily be perfect. For one 
thing, |V| may be odd. More to the point, our patching technique for aug- 
menting initial matchings in both coloring passes relies on keeping the degree 
of each vertex across the bipartition high throughout the algorithm. So, we 
must develop a methodology for choosing which vertices are missed by which 
matching. We note that the number of times a vertex can be missed by a 
matching depends on the difference between its degree and A. Thus, it is 
not surprising that in making our choices, we consider the following notion: 

Definition 2  The deficiency of a vertex v € B is def(v) = A — dß(v). 

We also find it useful to extend the notion of deficiency to subsets of vertices: 
if H C B then def(F) = J^veH defM- 

If the deficiency of G is large, which we will define as having more than 
2A9/10 vertices of deficiency greater than A9/10, it is not too hard to choose 
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the vertices to be missed in both coloring passes: all vertices that are missed 
by the initial matchings except the "large degree" big vertices. The patch 
construction itself, however, is more complex than in the regular case be- 
cause of the possible large number of low degree big vertices; we omit the 
details in this sketch. 

If no more than 2A9/10 vertices have deficiency greater than A9/10, i.e. the 
set of vertices B~ = {v £ B : def(«) > A9/10} is no larger than 2A9/10, then 
the minimum degree of B-B~ is A-2A9/10. As B-B~ is "almost" regular 
and "almost" equal to the whole graph (recall that we assume there are no 
small vertices), we will construct all patches through the vertices of B — B~ 
only, using patching techniques similar to the ones we used in the regular 
case. So, patching is "essentially" done. The problem now is to choose what 
vertices, missed by an initial matching, to patch. The constraints dictating 
our choices are: 

(i) No vertex should be missed by more than def(u) matchings (to obtain a 
reduction), and 

(ii) No vertex should belong to too many patches, so that the degree ac- 
cross the bipartition remains high (necessary for patching) and so that 
the degree of the rejects graph remains low (necessary for the reject 
coloring pass), 

(iii) The total number of rejected edges should be split evenly (or just 
about) between B\ and B2 (to facilitate the reject coloring pass). 

We can satisfy the first two constraints by initialy choosing, for each v E B*, 
about ^dei(v) initial matchings that miss v and deciding that the corre- 
sponding Mi miss v. To satisfy the third constraint, we will develop several 
methods to modify our initial "choices" so that, in each initial matching, 
the number of vertices we will need to patch is split evenly between B\ and 

B2. 

If the input graph G has medium deficiency, by which we mean that 
def(S) > A12/10 but no more than 2A9/10 vertices have deficiency greater 
than A9/10, we can easily modify the initial choices, essentially because there 
are many of them. 

The smaller the deficiency, the harder it is to insure the third constraint. 
This is especially true if small vertices are present.    For this reason, if 
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dei(B) < A12//1°, we find it useful to identify small vertices, while keep- 
ing multiple edges, and "create" new big vertices of degree greater than 
^A but at most A, of course. This identification process leaves at most 3 
small vertices and thus very little fake deficiency, but it "creates" new real 
deficiency at the new big vertices. We now resume our assumption that no 
small vertices are present. 

In G has small deficiency, i.e. when 2A < def(J3) < A12/10, very few 
vertices will be missed by each matching. We will develop more sophisticated 
techniques to finalize our choices. These techniques fail, however, on the 
lowest deficiency graphs, as they rely on a certain number of vertices being 
missed by each matching. 

In the smallest deficiency case, when def(G) < 2A, we must very carefully 
choose what vertices are going to be missed by a specific matching. However, 
even with special care, we will not always be able to construct a bipartite 
reduction. We illustrate this with the following example. Suppose \B\ is 
even, \S\ = 0, def(5) = A, def(&i) = ±A - 2, def(62) = deffo) = *A + 1 
where bu b3 G B2 and b2 <E Bx. Then cB = \E{BX)\ - \E{B2)\ = j(def(B2) - 
def(#i)) = \A - 1. If Mi,...,Mk, for k = ±A + o(A), were matchings 
whose removal leaves a bipartite reduction H = G — Mi — ... — M&1+/\2 

in (Bi,B2), then both b and b" must be missed simultaneously by exactly 
CB of these matchings. On the other hand, all d,B2(b") = |A + o(A) edges 
incident to b" must also be covered by the union of the matchings. We 
would thus require k > CB + d,B2{b") > |A + o(A), a contradiction. We 
thus cannot obtain a bipartite reduction with so few matchings. Instead, we 
must satisfy ourselves with H being a near-bipartite reduction N with no 
overfull subgraph of maximum degree A(iV). We recall that a polynomial 
time algorithm by Reed [Ree95] gives us a tool to color such a near- bipartite 
graph TV with A (TV) colors. For completenes, we include this algorithm in 
the appendix (A). 

2.5    The split partition and the forbidden subgraph 

We present the two technical procedures omitted from the proof of the reg- 
ular theorem: the construction of a split partition and the construction of a 
forbidden subgraph from a fail pair. We choose to describe these procedures 
in the general setting of a non-regular Vizing graph G = (V, E) = (B U S, E) 
of maximum degree A > ^\B U S\. 
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2.5.1    The split partition 

Our edge-coloring algorithms require that a special vertex partition {B\ U 
Si,i?2 U S2) of B U 5 be provided along with the input graph G = (B U 
S,E). In particular, we insist that the degree of each vertex is split about 
evenly between the two sides of the bipartition and that B and S are split 
about evenly as well. Furthermore, just in case our algorithms fail, we 
need additional sets of vertices to split about evenly between B\ U Si and 
B2ÖS2: this enables us to construct, in the forbidden subgraph construction 
procedure, a forbidden subgraph of G if we find two sets X and Y such that 
either 

ICßi and |Bi| - \X\ >]A~ A19/20 (2.4) 1     '     '    '      4 

or 

XCB2 and \B2\ - \X\ > ^A - A19/20 (2.5) 

and, in both cases, 

\Y\    <    |X|+A19/20 (2.6) 

dY(v)    >    ^A - A19/20 for all v G X (2.7) 

We call (X, Y) a fail pair in (BiliSi, B2US2). Our edge-coloring algorithms 
fail to A edge-color G only if a fail pair (X, Y) is found. We now recall the 
definition of splitting and of a split partition. 

Definition 3 Let (B1USi,B2US2) be a partition of BUS. A set H C J5U5 
splits within dif\\Hn {B1 USi)\-\HD (B2 U S2)\\ < d. 

Let 61,62,63,64,...,^ be the vertices in B such that def(6i) > def(&2) > 
def(63) > def(64) > ... > def(6fc) and let si,s2, ...,«fe be the vertices in S 
such that d(si) > d{s2) > ... > rf(aj)- A partition {Bx U Si, B2 U S2) of B U S 
is called a split partition if the following properties are satisfied: 

(a) £ = #10 52, S = Si US2, 0< |Bi|-|B2|<landO< |S2|-|Si| < 1. 

(b) For all v in B U S and for all X,Y C 5 of size less than 20 log A 
the following sets split within iA11/20: NB(v),Ns(v),NB{X),NB{v)D 
NB(X), {w G NB(X) : dNB[Y){w) > A - 7A39/40} 
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(c) If |5| is odd, either b<n G B\ and S2?+i G -B2 or 621 G -B2 and &2i+i G -Bi 
for i = 1,..., L 2 Ji m addition, b\, 63 G B\, 62 G -B2 and def(I?i — 61 — 
63) < def(^2 — 62). If I.BI is even, either foi-i G -Si and 621 G B2 or 
&2i-i G Bi and 62? G I?i for % — l,...,Li; in addition, 61,63 G B2, 
62,64 G Bi and def^ - 62 - 64) < def(£2 - bx - 63). 

(d) If [5| is odd, either s%i G 5i and S2i+i G 52 or «22 G 52 and S2i+i e £1 f°r 

i = 1,..., [2! i m addition, si G 52- If |5| is even and non-empty, either 

S2i-\ G Si and s2j G 52 or s2i-i G 52 and s2i G 5i for i = 1,..., LI; in 
addition, s\ G 52 and S2 €. S±. 

Let cß = \E(Bi)\ - \E(B2)\. Note that property (a) implies that if |S| 
is odd then c« = ^(A — (def(i?i) — def(i?2))), and if \B\ is even then 
cB = \(<M(B2) - def(Bi)). By property (c), it follows that 0 < def(ßi) - 
def(ß2) < def(6i) and \A < ±(A - def(6x)) < cB < ^A if \B\ is odd and 
0 < dei(B2) - def(Si) < def(6i) and 0 < cB < jdeffo) < ^A if |£| is even. 
We also observe that 0 < cs = \{d{S2) - d{S{)) < \d{si) < \A. Finally, 
we note that A{Bi U 5X) and of A{B2 U 52) are both less than \ A + \8. 

The following procedure constructs with positive probability a split partition 
(Bi U 5i, B2 U 52) of the set of vertices B U 5 of G: 

Partition Step: We order the vertices in B by non-decreasing deficiency 
(i.e non-increasing degree within B). For each successive ordered pair 
of vertices we switch the order of the pair with probability \ and put 
the first vertex in the set B\ and the second in the set f?2- If \B\ is 
even, after all the vertices but 61, 62, 63 and 64 have been assigned to 
B\ or B2, we rename B\ and B2 so that def(-Bi) < def(I?2) and we 
add 61 and 63 to B2 and 62 and 64 to B\. If \B\ is odd, after all the 
vertices but 61, 62 and 63 have been assigned to B\ or B2, we rename 
B\ and B2 so that def(Bi) < def(i?2) and we add 61, 63 to B\ and 62 
toB2. 

We similarly split 5 into sets S\ and 52- The ordering of the vertices 
is by non-decreasing degree. If \S\ is even, after all the vertices but 
the last pair have been assigned to S\ or 52, we rename S\ and 52 so 
that d{S\) < d(S2) and we add s\ to 52 and S2 to Si. If \S\ is odd, 
after all the vertices but si have been assigned to Si or 52, we rename 
S\ and 52 so that d(Si) < d(S2) and we add si to 52. 
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It is easy to see that the resulting partition (B\USi, B2US2) oiBUS satisfies 
properties (a), (c) and (d) of a split partition. In addition, property (b) 
is satisfied with probability at least |, as we show below. We note that 
the running time of this procedure is linear in the size of the vertex set, 
and that we can obtain a split partition deterministically in 0(2n) time by 
exhaustively testing every possible partition of B U S. 

Claim 4 The probability that there is some v in ßUS and some subsets X 
and Y of B such that \X\, \Y\ < 20 logn for which one of the following sets 
fails to split is less than ^: 

NB(v),Ns(v),N{X),N{v) n N(X),{w G N(X) : dN{Y){w) > A - 7A39/40} 

Proof:    Let \B U S\ = n and let m = 20 log n. There are fewer than 

2n + m(   H   )+nm      H      + m2      n n   ) < n«**» 
ml \ m  I \ m      \ m 

sets that we want to split. Let H = {v\,..., Vk} be one of them. We assume 
that no two vertices in H are paired in the partition step (if such pairs 
exist, they split evenly and we only need to worry about the remaining 
vertices). Let Hi - H n (Si U Si) and H2 = H n (Bi U 52). We define for 
all Vi € H — {bi, 62, &3,64, «i, «2} the random variable Xf. 

_ .     -1    if Vi 6 H2 
j~^   *       ifviEHi 

Then \\H2\ - |#i|| < | E,*=i Xi\ + 3' and 

k 

Pr(| Y,Xi\ > ^VkA1/20 - 3) < 2e^r < (2n4Uo^y 
i=l 

since A > | and A is large enough.      D 
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2.5.2    The forbidden subgraph construction 

If we find a fail pair (X, Y) in the split partition (B\ U Si, Bi U Si), then we 
can construct from it a subgraph satisfying condition (i) of the main (and 
regular) theorem. To show this, we first simplify our notation by calling a 
subgraph of B forbidden if the minimum degree of H is at least A — A79/80 

and either: 

(i) H is bipartite, or 

(ii) \B-H\>±A- A79/80 

If iY satisfies (ii.) we call it type 2, otherwise we call it type type 1. Note 
that if H is type 1 then \B - H\ < ±A - A79/80. 

We observe that, in the case of a regular graph G = (B, E) with \B\ < 2A, if 
B contains a forbidden subgraph H then condition (i) of the regular theorem 
follows, for if H is of type 2 then \B - H\ > A - 2A79/80. A slightly less 
trivial argument, which we omit until the proof of the main theorem, shows 
that condition (i) of the main theorem also follows if a general Vizing graph 
G = (B U S,E) with \B U S\ contains a forbidden subgraph. 

Lemma 13 (The patching lemma) LetG = (BUS,E) be a Vizing graph 
of maximum degree A > ||ßUS'| and let (BiUSi^iUSi) be a split partition 
of B U S. If (X, Y) is a fail pair in (Bi U Si, Bi U Si) then B contains a 
forbidden subgraph. 

We prove the patching lemma by showing, in claims 5, 6 and 7, that the 
forbidden subgraph construction procedure, described below, returns a for- 
bidden subgraph G if G contains a fail pair (X,Y). By symmetry, we can 
and will assume that X C Bi and |2?i| — \X\ > |A — A19/20, and we recall 
that the following hold: 

\Y\    <    |X| + A19/20 (2.8) 

dY(v)    >    ^A - A19/20 for all v G X (2.9) 

The forbidden subgraph construction procedure 
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1. We construct the set Z = {v £ Y : dx(v) > ±A - 3A39/40}. 

Since \Y - Z\ < §A39/40 (by claim 5 below), it follows that dz{v) > 
\ A - 3A39/40 for all v £ X and that dx (v) > \ - 3A39/40 for all v £ Z. 
Note that Icßi and Z C B2 and that 

|B2 -Z\> \B2 - Y\ > ^A - 3A19/20 (2.10) 

In the last two steps of this procedure, we will use X and Z to construct 
a forbidden subgraph in B. As the construction is entirely within the 
subgraph B, and to simplify the notation, we will use N(v) to denote 
NB{V) in these last two steps and the remainder of this section. 

2. We construct a set X° C X such that Z C N(X°) by recursively 
picking x £ X - X° so that \Nz(x) - NZ(X°)\ is largest.   We 
similarly construct Z° C Z such that X C N{Z°). 

We show in claim 6 that \X°\ and \Z°\ are less than 20 log A. Since 
every x £ X° (respectively, x £ Z°) is adjacent to at most 3A39/40 + 
An/20 vertices in B2 — Z (respectively, B\ — X), it follows that 

\(N(X°)nB2) -Z\< 80A39/40logA (2.11) 

\(N{Z°)nBi)-X\ < 80A39/40logA (2.12) 

3. We construct sets Kx = {v £ N(X°) : dN{z0)(v) > A - 7A39/40} 

and Kz = {v £ N(Z°) : dN{x0)(v) > A - 7A39/40}. 

In claim 7, we prove that if Kx D Kz = 0 then Kx U Kz is a forbidden 
subgraph of G of type 1, and if Kx D Kz =£ 0, Kx n ifz is a forbidden 
subgraph of G of type 2. 

The patching lemma then follows. 

Claim 5 After step 1, \Y - Z\ < §A39/40. 

Proof:    The number of edges between vertices in X and Y is 
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\E(X,Y)\   >    |Z|(|-A19/20) 

> (|y|-A19/20)(-A-A19/20) 

> |y|(lA-A19/20)-A19/20|y| 

> |y|(^A-2A19/20) 
Zi 

If \Y — Z\ were greater than |A39/40, we would obtain the following contra- 
diction: 

\E(X,Y)\   <   |Z|(^A + A11/20) + |F-Z|(iA-3A39/40) 

< |y|-A-7A78/40 

< |y|(U-2A19/20) 
Li 

since \Y\ < \B2 U S2\ < \\B U S\ < 3A. 

D 

Claim 6 After step 2, |X°| < 20 log A. 

Proof: Each vertex in Z is adjacent to at least ^A — 3A39/40 vertices in 
X and |X| < 3A. It follows that each vertex in Z — Nz(X°) is adjacent to 
at least ±A - 3A39/40 > |A vertices in X - X° and \X - X°\ < 3A. Thus 
we know that Z — Nz(X°) is reduced by at least a ninth at each iteration. 
So there will be at most logg A < 20 log A iterations.      D 

Claim 7 After step 3, if KxV\Kz = 0 then KxDKz is a forbidden subgraph 
of G of type 1, and if Kx n Kz ^ 0, Kx fl Kz is a forbidden subgraph of G 
of type 2. 

Proof: We first show that X C KzCiBi and, by symmetry, Z C Kx^B^. 
If v € X then v G N{Z°) and dz(v) > £A - 3A39/40. Since Z is a subset 
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of N(X°) n B2, it follows that \N(v) n iV(X°) n S2| > 5A - 3A39/40 and, 
because N{v) n iV(X°) splits (by claim 4), |JV(u) n N{X°)\ > A - 7A39/40. 
ThusüGÜTznßi. 

By inequalities 2.11 and refeq:construct3, it follows that \N(X°) — Kx) H 
B2\ < 80A39/40logA and |JV(Z°) -KZ)^BX\ < 8OA39/40 log A. Because 
N(X°), N(Z°), Kx and Kz split (by claim 4) and since Kx C iV(X°) and 
Kz C JV(Z°) we obtain 

\{N{X°)-Kx)C\Bi\ <81A39/40logA 

\{N(Z°) -Kz)r\B2\< 8IA39/40 log A 

which implies 

\N(X°) -Kx\< 162A39/40logA 

\N(Z°) -Kz\< 162A39/40 log A 

so \N(X°) n N(Z°) -KxnKz\< 324A39/40 log A. 

If Kx H Kz ^ 0 we obtain, from the above analysis and using inequalities 
2.10, 2.11 and 2.12, 

\KxnKz\   <   |JV(x°)niV(z0)| 
< \N(z°)nBi\ + \N(x0)nB2\ 
< \x\ + \z\ + I6OA39/40 

•■       <    |ß| _ I A + A79/80 

Furthermore, for every v € Kx D Kz, 

dKxnKz(v)    >   rfAr(xo)niV(zo)(«)-324A39/40logA 

> dN{x0) („) _ 7A39/40 - 324A39/40 log A 

> A-A79/80 

So, Kx n i<fz is a forbidden subgraph of G of type 2. 
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If KxnKz = 0, we obtain that dKz (v) > A - 7A39/40 - 162A39/40 log A > 
A - A79/80 for every v G Kx and, by symmetry, dKx (v) > A - A79/80 for 
every v G Kz- Thus, (Kx,Kz) is a forbidden subgraph of G of type 1.      □ 



Chapter 3 

The main theorem 

3.1    Restating the theorem 

We now prove the main theorem: 

Theorem 14 (main theorem) There exists Ao such that for all simple 
graphs G = (V, E) with maximum degree A > Ao and n = \V\< 6A; one of 
the following is true: 

(i) G contains a subgraph H such that 5(H) > A — A79/80 and either: 

H is bipartite, or 

\V-H\>A- 8A159/160 

(ii) G contains an overfull subgraph H of maximum degree A, 

(iii) G is A edge colorable. 

Furthermore, there is a procedure which runs in 0(2") time that will output 
either a A edge coloring of G or a subgraph H of G that satisfies one of (i) 
or (ii). 

The lower bound on the maximum vertex degree Ao satisfies a number of 
inequalities that appear throughout this paper. In order to prove the main 
theorem, we make its statement more precise. We need the following result 
by Vizing [Viz64]: 

49 
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Lemma 15 (Vizing's Adjacency Lemma) Let G = (V, E) be a simple 
graph of maximum degree A such that G — (u, v) is A edge colorable, for 
some edge (u, v) £ E. If 

d{u) + \{x 6 V : (x, v)GE and d(x) = A}| < A + 1 

then G is also A edge colorable. Furthermore, a A edge coloring ofG—(u,v) 
is extendable to a A edge coloring of G in 0(n ) time. 

This lemma motivates the following definition: 

Definition 4 A simple graph G = (V, E) of maximum degree A is called 
Vizing if for all (u,v) in E: 

d(u) + \{x<=V : (x,v) € E and d(x) = A}| > A + 1 

Given an arbitrary simple graph G we define the Vizing reduction of G 
to be the subgraph obtained by recursively removing edges (u, v) such that 

d(u) + \{x : (x,v) E E and d{x) = A}\ < A + 1 

Obviously, the Vizing reduction of G is unique and Vizing. The adjacency 
lemma shows that we can extend a A-edge coloring of the Vizing reduction 
of G to a A-edge coloring of G in 0(n4) time. Furthermore if the Vizing 
reduction of G contains a subgraph H that is overfull with maximum degree 
A or satisfies one of (i) or (ii) of the main theorem, G does too. Thus it 
suffices to prove the theorem for Vizing graphs. 

Note that in a Vizing graph, the set S — {v : d(v) < |A} is a stable set. 
Furthermore, if a vertex in B = V — S is adjacent to a vertex in S then 
it has more than ^A neighbors of maximum degree. Thus, every vertex in 
B has more than ^A neighbors in B. We shall often speak of the Vizing 
graph G = (B U S,E) rather than G = (V, E) and call the vertices in B 
big and vertices in S small. We also call edges in E(B) big and edges in 
E(B, S) small. Finally we will often abuse notation and denote by B the 
graph induced by the set of big vertices of G; in general, we will denote by 
H the subgraph induced by vertices in the subset H C B U S or we denote 
by H the vertices of a subgraph of G. 
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We now give the first refinement of the theorem. To do this we need the 
following definition: 

Definition 5 Let G — (B U S, E) be a Vizing graph. We call a subgraph H 
of B forbidden if its minimum degree 5(H) > A — A79/80 and either: 

(i) H is bipartite, or 

(Ü) \B - H| > ±A - A79/80 

If H satisfies (ii.) we call it of type 2, otherwise we call it of type 1. Note 
that if H is type 1 then \B-H\<\&- A79/80. 

Theorem 16 (first refinement) There exists Ao such that for all Vizing 
graphs G = (B U S,E) with maximum degree A > Ao and \B U S\ < 6A, 
one of the following is true: 

(i) B contains a forbidden subgraph. 

(ii) G contains an overfull subgraph of maximum degree A, 

(iii) G is A edge colorable. 

Furthermore, there exists a procedure which runs in 0(2\v\) time that will 
output either a A edge coloring of G or a subgraph H of G that is forbidden 
or overfull with maximum degree A. 

Claim 8 Let G = (B öS, E) be a Vizing graph of maximum degree A such 
that \B U S\ < 6A.   If B contains a forbidden subgraph H of type 2, then 
\B\JS-H\ > A-8A159/160. 

Proof: We consider the set C = {v G B - H : dH(v) > x/3A159/160}. We 
observe that since \H\ < 6A, then \E(H, BUS-H)\ < 6AA79/80 < 6A159/80, 
and it follows that \C\ < 2\/3A159/160. If there is a vertex v of degree A in 
B-H-C then dBus-H{v) > A - v^A159/160 and so \B U S - H\ > A - 
v/3Ai59/i60 If no vertex of B-H-C has degree A, then, for any v G B-H- 
C,\{xeBUS: (x,v) E E and d(x) = A}| < dH(v) + \C\ < 3\/3A159/160. 
Because G is a Vizing graph, d(u) > A — 3\/3A159/160 for every neighbor of 
v. Furthermore, dß-H-c(v) > |A — 3\/3A159/160. So, we can choose some 
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neighbor u of v in B-H -C such that dV-H{u) > d(u) - v^A159/160 > 
A-4^A159/160 > A-8A159/160. This implies \B\JS-H\ > A-8A159/160. 

D 

We now move to further refine the statement of the main theorem. We 
introduce another definition that we will find useful: 

Definition 6 A partition (B, S) of the vertices of a graph G = (B U S, E) 
of maximum degree A is called weakly Vizing if: 

1. dß(v) + dß-viu) > A for all u,v G B, 

2. dß(u) < |A for all u G S, 

3. dB(v) > |A for all v G B. 

We will call a graph weakly Vizing if there is a weakly Vizing partition 
of the vertices in G. For example, a Vizing graph G — (B U S, E) is always 
weakly Vizing with the obvious partition (B,S), since dß(v) > ^A for all 
v E B and dß(u) < ^A for all u G S. Note that, in a weakly Vizing graph 
G = (B U S,E), the graph induced by Bis itself a weakly Vizing graph, 
with the weakly Vizing partition (J3,0). 

An overfull subgraph F of maximum degree A in a weakly Vizing graph 
G = (B U S, E) is called trivial if F has maximum degree A, and F = B, 
F = B — v for some v G B or F = B + u for some u G S. We will use 
different versions of the following technical lemma several times throughout 
this proof: 

Lemma 17 (trivial lemma) Let G = (BUS,E) be a weakly Vizing graph 
of maximum degree A. If G contains an overfull subgraph F of maximum 
degree A then one of the following is true: 

(i) G contains a forbidden subgraph of type 2. 

(ii) G contains a trivial overfull subgraph. 

Proof: We first remark that the set R = {v G F : dF(v) < A - >/Ä} 
is smaller than y/Ä. Thus the subgraph H induced by F — R in B has 
minimum degree greater than A — 2vA. 
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Consider the set C = {v E B - F : dF > y/E}. Clearly, \C\ < \/Ä. 
If B — F — C contains two vertices u and v, then at least one of them, 
say v, has at least |A neighbors in B since dB(v) + dB-v(u) > A. Then, 
dB-F(v) > \A — VÄ and, furthermore, if is a forbidden subgraph of type 
2. On the other hand, if \B - F\ < \C\ +1, it follows that \B - F\ < 2, since 
\E(F, B - F)\ < A and because dB{v) + dB-v(u) > A for all u, v E B (G is 
weakly Vizing). 

If B - F = {u,v}, then \E{F + u + v)\ = \E(F)\ + dB{v) + dB-v{u) > 
\{\V{F)\ - 1)A + A = \{\F + u + v\ - 1)A and B = F + u + v is an 
overfull subgraph of G as well. So, in any case, there exists an overfull 
subgraph F' of maximum degree A such that \B — F'\ < 1. Suppose now 
that \F' n S\ > 2, and let u and v be two vertices of F' n 5. Then \E{F')\ = 
\E(F' -u-v)\ + dF{u) + dF(v) < T;A(\F'\ - 2), which contradicts the fact 
that F' is overfull. So, \F' D 5| < 1. Finally, we show that if \B - F'\ = 1 
and |Sn.F'| = 1, then B itself is overfull, implying that G contains a trivial 
overfull subgraph. Suppose that F' — B — v + u for some v G B and u E S. 
Then \E(F')\ = \E(F' - u)\ + dF(u) = \E(B)\ - dB(v) + dF{u) < \E(B)\ 
and B is overfull.      D 

Using the above results we can now give a more precise formulation of the 
main theorem. 

Theorem 18 (final refinement) There exists Ao such that for all Vizing 
graphs G = (B U 5, E) of maximum degree A > Ao and \B U S\ < 6A, one 
of the following holds: 

(i) B contains a forbidden subgraph, 

(ii) G contains a trivial overfull subgraph, 

(iii) G is A edge colorable. 

Furthermore, there is a procedure which runs in 0(2lyl) time that will output 
either a A edge coloring of an input graph G, a trivial overfull subgraph of 
G or a forbidden subgraph of B. 

The remarks in this section suggest that we are really interested in coloring 
E{B) and that the edges to S are somewhat superfluous. This motivates 
the following definitions, and our focussing on B in the proof of theorem 18: 
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Definition 7 Let G = (B U S,E) be a weakly Vizing graph of maximum 
degree A. 
The deficiency of a vertex v G B is def(v) = A — dB{v). 
The real deficiency of a vertex v G B is defr(v) = A — do(v). 
The fake deficiency of a vertex v G B is defs(v) = ds(v) = def(v)-defr(v). 
More specifically, the fake deficiency of v with respect to u G S is defu(v) = 
fj,(u,v). 

We find it convenient to use the following notation. If H C B then dei(H) = 
Eveffdef(u), ddr(H) = Ev€H^r(v) and def5(tf) = £«€*defs(t;).   If 
HcBandH'cSthendefo(if) = £wei?, def„(tf) = £MGH, E^H

def«(w)- 

Note that d(S) = E„e5d(5) = defs(5)- 

We finish this section with a useful lemma in which we give the necessary and 
sufficient conditions, in terms of deficiency, for a Vizing graph G = (BUS, E) 
to contain a trivial overfull subgraph: 

Lemma 19 If G = (B U S, E) is a Vizing graph then: 

(i) B is a trivial overfull subgraph if and only if\B\ is odd and def(B) < A. 

(ii) B — v is a trivial overfull subgraph for some v in B if and only if \B\ 
is even and def(B) < 2def(v). 

(iii) B + u is a trivial overfull subgraph for some u in S if and only if \B\ 
is even and def(B) < 2defu(B). 

Proof:     B is a trivial overfull subgraph if and only if \B\ is odd and 
2\E(B)\ > A(\B\ - 1). The inequality 2E(B) > A(\B\ - 1) is equiva- 
lent to def(B) < A, since 2\E(B)\ = EveßMv) = Eveß(A ~ de%)) = 
A\B\-dei(B). 

B — v is a trivial overfull subgraph, for some v in B, if and only if |5| is even 
and 2\E(B - v)\ > A(\B\ - 2). This inequality is equivalent to dei(B) < 
2def(w), since 2\E(B - v)\ = 2\E{B)\ - 2dB{v) = A\B\ - def(£) - 2dB(v). 

B + u is a trivial overfull subgraph, for some u in S, if and only if\B\ is even 
and 2\E(B+u)\ > A\B\. This inequality is equivalent to dei(B) < 2defM(J5), 
since 2\E(B + u)\ = 2\E(B)\ + 2dB(u) = A\B\ - dei(B) + 2def„(S).      □ 
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3.2    The edge coloring algorithms 

In chapters 4, 5 and 6, we will present several algorithms that attempt to 
color with A colors the edges of Vizing graph G = (B U S, E). We assume 
that the maximum degree of G, A, is large, \B U S\ < 6A, that no trivial 
subgraph of G is overfull and that a split partition (B\ U S\,B2 U S2) of 
B U S is provided. In case our algorithms fail, we will show the existence 
of and construct a fail pair (X,Y) in (B\ U S\,B2 U £2). We will use this 
fail pair to construct a forbidden subgraph in B, by applying the forbidden 
subgraph construction procedure. The main theorem then follows from the 
proofs of correctness of the edge coloring algorithms. 

The main idea of our edge-coloring algorithms is an attempt to construct 
disjoint matchings M\,..., M& such that H — G — U^=1Mj is a reduction of G 
that is easily A(H) edge colorable. In most cases, H will be a subgraph of 
(B\ U Si, B2 U S2), i.e. a bipartite subgraph whose edges we can color with 
A(H) colors using a polynomial time algorithm derived from the proof of 
Konig's theorem. In a few special cases, H will be a near-bipartite subgraph 
with no overfull subgraph of maximum degree A such that H — v is a sub- 
graph of {B\ U SI, B2 U 5*2) for some v € B. In that case, we can use Reed's 
polynomial time algorithm, described in appendix A to color the edges of 
H with A(H) colors. Once we have colored H, we assign the remaining k 
colors to the matchings M\,..., M^. 

Our main goal, then, is to construct the matchings ML, ...,Mk- We will do 
that through two coloring passes, as we did in the regular case. 

3.2.1    The two coloring passes and the marking 

In the first coloring pass, we construct the first Ai matchings Mi,..., MAX 

such that F = G - U^M; is a reduction of G, where Ai = ^A + o(A). 

We will start with an initial coloring, i.e. disjoint matchings M{, ...,M'A 

such that U^Af/ = E{Bi U Si) U E(B2 U S2), as in the regular case. We 
will end by recursively augmenting each M\ along vertex disjoint patches 
constructed in F = G — M\ — ... — Mj_i between vertices of "large" degree 
(patching), thereby obtaining M, that hits every "large" degree vertex and 
finally insuring that F = G - Mi - M2 - ... - MAX is a reduction of G. 
The edges in B\ U Si and in B2 U S2 that we uncolor while augmenting 
the patches are added to reject graphs R\ and R2 that we will color in 
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the reject coloring pass, using disjoint matchings M^+i, ■■■, MA!+A2> where 
A2 = o(A). If we are unable to construct a patch then we will find a fail 
pair (X,Y). 

In order to describe what vertices, missed by an initial matching M/, have 
"large" degree and must be patched, we define a marking that indicates, 
for every i = 1,..., Ai + A2, which big vertices will be missed by Mj. More 
precisely a marking of the vertices in B in the matchings Mi, ...,MA1+A2 

iS 

an assignment m : B x {1,2,..., Ai + A2} ->■ {0,1} such that m(v, i) = 1 if 
and only if v is missed by the big edges of Mi (recall that an edge (a;, y) is 
big if x,y G -B). If m(v,i) = 1 we will say that v is marked in Mi or that 
Mi contains a mark on v. Intuitively each mark on a vertex v represents a 
"unit" of deficiency. Since we use two types of deficiency, we additionally 
specify whether a mark is real and Mi misses v, (denoted by mr(v,i) = 
1), or whether a mark is fake and Mj hits v with an edge (v,u) G (B,S) 
(denoted by mu(v, i) = 1). We call a marking proper over an initial coloring 
M[,...,M'A iimr(v,i) = 1 implies that M\ misses v and mu(v,i) = 1 if and 
only if (u,v) G M[. 

We define some notation we will find useful. Let mAl(v) = Y^i=\m(v^) 
and m(v) = X^i^2 m(v,i). We similarly define mAl (v) and mu(v), where 
u G S or u = r. If mAl (u) = A; then we will say that v has A; marks in the first 
Ai matchings. For any iCßwe define m(A) = J2veA m(v) an<^ we say 
that A has m(^4) marks; we similarly define mAl(A), mu(A) and mAl(A), 
where « G 5 or it = r. For any 4 C 5, we define mi(«) = ^ueAm«(t') 
and we similarly define rnAl(v) and mJ4(i') and mA}{A') where A' C B. 
We make the important observations that H = G — M\ — ... — MA!+A2 

1S 

a reduction of G if and only if 0 < mr(v) < defr(u) for every v E B and if 
is bipartite with edges in E(B\ U Si,B2 U 52) only if mu(«) = defu(w) for 
every (v, u) G ^(5i, 5i) U E(B2 U 52). 

The marking definition turns out to be the heart of the difficulties of our 
edge coloring algorithms. After defining an initial marking that is proper 
over the initial matchings M{,...,MA!, we will modify the marking and 
the matchings to "prepare" them for patching. Because of the difficulties 
involved, we will develop different methods to modify the marking depending 
on the total deficiency of the input graph (def(S)). This is why we choose 
to present separate edge-coloring algorithms for graphs of large, medium, 
small and smallest deficiency (to be precisely defined later). 

In the reject coloring pass, we color the remaining, uncolored edges in 
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B\ U S\ and B2LI S2, i.e. the graphs Ri and R2, respectively. We start by 
coloring the edges in E(Ri) and E{R2) with A2 = o(A) colors to obtain the 
initial coloring defined by the initial matchings MA +1,...,MA +A . We 
then define a marking, that is proper over the initial matchings, and then 
we patch the unmarked vertices missed by each M'Ai+i to obtain MAl+j. 
We insist however that all patches consist of one edge only, as in the regular 
case. If we fail in augmenting a matching MA +i we will prove the existence 
of (and construct) a fail pair (X,Y). 

In the following 2 sections, we describe procedures that equalize the number 
of big edges in the initial matchings M{,...,MA   and MAi+1, —,M'A+A 

and that equalize the number of marks in each matching Mi,...,MAl+A2. 
We will find these procedures extremly useful. 

3.2.2    Balancing the matchings 

Let H be a graph whose vertices are partitioned into sets B and S such 
that S induces an independent set in H (i.e. E(H) = E(B) U E(B,S)). 
We call disjoint matchings Mi,...,Mfc covering E(H) (i.e. U*=1Mi = E(H)) 
balanced in B if for any 1 < % < j < k: 

0 < \Mj f] E(B)\ - \Mi n E(B)\ < 1 (3.1) 

We can modify any disjoint matchings M\,...,Mh covering E{H) so that 
inequalities 3.1 are satisfied for all 1 < i < j < k by recursively repeating 
the following procedure: 

The balancing procedure 

We pick matchings Mj and Mj with i < j such that either (a) \Mj D 
E(B)\ - \Mt n E(B)\ > 1 (see figure 2.1) or (b) \Mj D E{B)\ - \Mt n 
E(B)\ < 0. We consider the connected components of Mj U Mj con- 
sisting of cycles and paths whose edges alternate between edges in Mj 
and edges in Mj. We observe that in all alternating cycle components, 
the number of big edges (whose endpoints are in B) is even and half 
of the big edges belong to Mi while the other half belongs to Mj. An 
alternating path, however, may contain an odd number of big edges. 
So, in case (a), there must exist a connected component of Mi U Mi- 
that is an alternating path P with one more big edge in Mj than in Mj 
(see figure 2.1). In case (b), there must exist a connected component 
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of Mi U Mj that is an alternating path P with one more big edge in 
Mi than in Mj. In both cases, we switch the color of each edge of P. 

r\ r\ r\ 
k • * 4 

-• ---o »-- »        • 

Figure 3.1: M, (full edges) and Mj (dashed edges) with |Mj HE(B)\ - \Mt n 
#(.B)| = 2, with big and small vertices represented with dots and circles, 
respectively 

It is easy to check that Mi, ...,Mt are balanced after at most 0{n2) itera- 
tions. 

3.2.3    Equalizing the marking 

Let Ebea graph whose vertices are partitioned into sets B and S such 
that the vertices in S induce an independent set in H (i.e. E(H) = E(B) U 
E(B, S)). Let Mi,..., M^ be disjoint matchings covering E(H) and balanced 
in B. We call a proper marking m of the big vertices of B in the matchings 
Mi,..., Mfc equalized if for any 1 < i < j < k: 

0<m{B,i)- m(B, j) < 2 (3.2) 

where m{B,i) = J2veBm(v^) = * f°r evei7 « = 1,—,&• We can modify 
a marking m and the matchings Mi, ...,Mt so that inequalities 3.2 are sat- 
isfied, while maintaining the properties that Mi,...,M^ are disjoint, cover 
E(H) and are balanced in B, by recursively repeating the following: 

Equalizing the marking We pick two matchings M, and Mj with i < j 
such that either (a) m(B,i) — m(B,j) > 3 (see figure 3.2) or (b) 
m(B,j) — m(B,i) > 1. We consider the connected components of 
Mi U Mj, which consist of alternating cycles and alternating paths 
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(which may consist of a single vertex). We remark that in any alter- 
nating cycle component, the number of big vertices marked in Mj is 
equal to the number of vertices marked in Mj. On the other hand, 
an alternating path component may contain up to two more vertices 
marked in Mj or in Mj. Depending on the case, we do as follows 

(a) there must exist either an alternating path P with an even (may 
be zero) number of edges in E(B) and with k = 1 more marks 
in Mi than in Mj (see figure 3.2), or a pair of alternating paths 
Pi and P2, each with an odd number of edges in E(B) such that 
Pi has one more edge in Mi n E(B) and Pi has one more edge in 
Mj n E(B) and so that Pi U P2 has k = 1 or k — 2 more marks 
in Mi than in Mj. 

*—</ 

/ \ 

Figure 3.2: Mj (full edges) and Mj (dashed edges) with a marking on the 
vertices (full for marks in Mj and dashed for marks in Mj) that satisfies 
m(B,i)-m{BJ) >3 

(b) there must exist either an alternating path P with an even (may 
be zero) number of edges in E(B) and with k = 1 more marks 
in Mj than in Mj or a pair of alternating paths Pi and P2, each 
with an odd number of edges in E(B) such that Pi has one more 
edge in Mj n E{B) and P2 has one more edge in Mj D E(B) and 
so that Pi U P2 has k = 1 or k = 2 more marks in Mj than in Mj. 

In both cases we pick the path P or the pair of paths Pi, P2, whichever 
exists and we switch the color of the edges on the path(s) and the marks 
on the vertices of the path(s) (i.e. a vertex marked in Mj becomes 
marked in Mj and vice versa). Thus we decrease the difference between 
the number of marks in Mj and Mj by k. 



Chapter 4 

The large and medium 
deficiency cases 

In this chapter, we present two algorithms that attempt to construct disjoint 
matchings Mi,...,Mk such that H = G = M\ — ... — M^ is a bipartite 
reduction of a Vizing graph G = (BUS,E) of deficiency at least A12/10. We 
will assume that G contains no trivial overfull subgraphs, that the maximum 
degree A of G is large enough, that \B U S\ < 6A and that a split partition 
(BiUSi, B2US2) of BUS edge is provided. In case our algorithms fail, we will 
show the existence of and construct a fail pair (X, Y) in (B\ U S\, B2 U S2). 

4.1    The large deficiency case 

We consider first the large deficiency graphs, which we define as graphs with 
more than 2A9/10 vertices of deficiency greater than A9/10. In other words, 
if we define B~ = {v £ B : def(u) > A9/10} then \B~\ > 2A9/10. Note that 
if G = {B U S, E) has large deficiency then def(5) > 2A18/10. 

4.1.1    The first coloring pass 

In the first pass, we construct disjoint matchings MI,...,MA15 where Ai = 
\ A + S = [1A + A11/20], such that F = G-M1-...- MAl is a reduction of 
G and U^Mj contains all edges in E(BiUSi)-E(Ri) and in E(B2US2)- 

61 
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E(R2) where R\ and R2 are reject subgraphs in B\ U S\ and in B2 U S2, 
respectively, of maximum degree less than |A9/10 such that \E(R\)\ and 
1^(^2)1 contain less than A17/10 edges. In addition, we insist that the 
marking satsfies 

l™Al («) - ^def(w)| < jA9/10 for all v G B (4.1) 

To help us with the marking, we find it useful to partition the vertices of B 
as follows: 

Bl   =   {iCe5:defr(;r)<4A11/20} 

Bs   =   {xeB: defr(z) > 2A9/10} 

Thus, B — Bl — Bs is the set of vertices with real deficiency between 4A11/20 

and 2A9/10. We remark that Bs may be empty and, furthermore, we could 
have defr(u) = 0) for all v e Bl 

The initial coloring 

We initially construct matchings M[,...,M'A, balanced in B\ and in f?2, 

such that uf=\M^ = E{BX U Si) U E(B2 U S2) as follows: 

1. We apply Fournier's algorithm to color the edges of E{B\ U Si) with Ai 
colors to obtain the disjoint matchings M\,..., MAi. We balance these 
matchings in Bi using the balancing procedure from section 3.2.2. 
We similarly construct M±,...,MAi, balanced in B2. For every i = 
1,..., Ai, we set M[ = M} U M?. 

Since 0 < cB = \E{Bi)\ - \E(B2)\ < |A, it follows that 0 < \M} - M?\ < 1 
for all i = 1,...,Ai; actually, \M} — Mf\ = 1 for exactly c# indices i. Note 
that Ai — dßiUStiv) of the matchings miss v € Bi. Using the equivalent 
fact about v G B2 and the properties of a split partition, it follows that the 
number of matchings missing v G B is at least ^defr(v) + |<5 and at most 
Adef» + \S. 

The initial marking 

We now define an initial marking of the vertices in B that is proper over the 
matchings M{, ...,M'Ai and balanced in Bi and B2: 

2.1 We set mu(v, i) = 1 for every v G B, every u G S and every i = 1,..., Ai 
such that (v, u) G M[. Then, for every v G B — Bl, we set mr(v, i) — 1 
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for every M[ missing v. Finally, for every v € Bl, we pick a set 
1Z of [^defr(v)] matchings (among M[,...,M'Ai) missing v. We set 
mr(v, i) = 1 for every M[ £ 1Z. 

2.2 We equalize the marking defined in 2.1, separately in B\ and B2: over 
the initial matchings M{,..., M'A using the equalizing procedure from 
3.2.3. 

We observe that, even though we modify M[,..., M'A in 2.2, the matchings 
remain balanced over B\ and B2 and still contain all edges in E{B\ U S\) 
and in E(B2 V> S2). The marking is valid since 0 < mr(v) < defr(t;) for all 
v € B. Furthermore, 

\mAl(v) - jrdef(v)\ < 26 for all v G B (4.2) 

from which it follows that \mAl(Bi) — ^dei(Bi)\ < 2\Bi\S. Equivalent results 
hold for I?2- Let n(B\,i) and n(B2,i) be the numbers of unmarked vertices 
in Bi and in B2, respectively, missed by M[. 

Claim 9 For all i = 1,.., Ai: 

m(Bi,i),m(B2,i) > 5A4/5, and 

n{Bi,i),n{B2,i) < 85. 

Proof: We prove both statements only for Bi, as the corresponding re- 
sults for £?2 follows by a symmetric argument. We note that mAl(Bi) > 
idef(Si) - 2|J3i|<y > iA18/10 - A16/10. Since the marking is equalized in 
Bi, it follows that m(Bui) > ^-mAl(J5i) - 2 > ^A4/5. 

Only vertices in Bl can be unmarked in an missed by a matching M[. Since 
v € Bl is marked in [^defr(v)] matchings, v is unmarked in and missed by at 
most |J matchings. Since the marking is equalized in Bi and the markings 
are balanced in £?i, any M[ misses at most ^-f #|#i| +2 < 85 vertices in 
Bi.      □ ■ 

The patching 

For i = l,...,Ai,we recursively construct Mi by augmenting M[ along vertex 
disjoint patches we construct in F = G — Ri — R2 — Mi — M2 — ... — Mi-\. 
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We construct the patches in F so that every unmarked big vertex v (i.e. 
m(v, i) = 0) missed by M[ is included in some patch; by augmenting the 
patches we will insure that these vertices are hit by M{. Note that only 
vertices in Bl can be unmarked in and missed by an initial matching M[. 
Each augmentation leaves uncolored edges that we add to the reject graphs 
R\ and R2. If we fail to construct a patch then we return a fail pair (X, Y) 
m{BiUSi,B2l)S2). 

In order to describe the construction of the disjoint patches in F = G — 
Ri — R2 - Mi - ... — Mi-i, we first define some terminology. In this large 
deficiency case, a patch is either a sequence of vertices a;0, y°, xl, y1,..., x\ yJ 

or x°,y°, xl,yl,..., a/7, y-7, x? +1 such that a;0 is an unmarked vertex in B\ or 
in£2 missed by M;, (xl,yl) E E(F)nE(B1USuB2\JS2) and (yl,xl+1) € M[ 
for / = 0,..., j. We call y-7 and x^+l the external vertices of the patch. 

We construct the patch P starting at some unmarked vertex x G Bi missed 
by M\ and not included in any of the already constructed patches in F as 
follows: 

3.1 We first define unavailable and usable vertices.   We call v £ B U S 
internally unavailable if v is belongs to any of the patches already 
constructed in F or to any of the patches constructed for one of the 
previous 8[A1/10] matchings (M;_i, ...^M^^^i/w^). We call v E BUS 
externally unavailable if v is an external vertex of any of the patches 
already constructed in F or any of the patches constructed for one 
of the previous 8 [A1/10] matchings. We call v e Bl) S usable if 
v is unmarked in and missed by M-, if v is missed by M[ and v is 
not externally unavailable, or if (v,u) E M[ and neither u nor v is 
externally unavailable. Finally, we call v E BU S internally usable 
if {v,u) E M[ and neither u nor v is internally unavailable. 

We observe that all internally usable vertices are usable. 

3.2 We recursively build the sets X°,...,Xk+1 and Y°,...,Yk where k = 
6\A1/20] as follows: 

X° = {x}, and for Z = 0, ...,*;, 

Yl = {v E B : v is usable and 3u E X1 such that (u, v) E E(F) D 
E(BlUS1,B2US2)}. 

Xl+1 = {v E B-B8 :3u EYl s.t. (u, v) E M[ and u, v are internally 
usable} 
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Yl > Xl+l for every I = 0, ...,k, and Y^ > X^+l if and only if there is 
a usable vertex y G Y^ that is either missed by M[ or hit with an edge 
(y, z) G M\ such that z G Bs U S and z is usable. 

3.3 If for some j, there is a vertex y G YJ' that is missed by M-, we construct 
the patch P defined by the sequence of vertices x = x°, y°, x1, y1,..., 
yj-lxi,yi = y where xl G X1, yl G Yl and (xl,yl) G E(F) n E{B1 U 
S2,B2 U 52), for / = 0, ...,j, and (y',^+1) e Af/ for / = 0, ...,j - 1. In 
addition we adjust the marking as follows: 

i. If y € B and mr(y,i) — 1, we reset it to mr(y,i) = 0; 

ii. If y G 5, we set my{x^i) = 1; 

Finally, for every small vertex y' that appears on P such that 0 < / < 
j — 1, we reset myi(xl+1,i) = 0 and we set myi(x

l,i) — 1. 

3.4 If for some j, there is a vertex y €YJ that is hit with an edge (y, z) € M[ 
such that z € Bs U 5 (so that y and 2 are usable), we construct the 
patch P defined by the sequence of vertices x = x°, y°, x1, y1,..., yJ'-1, 
xi,yJ,z as above. In addition, we adjust the marking as follows: 

iii. If y € B and z G 5, we reset mz(y, i) = 0; 

iv. It y £ B and 2 G Z?s, we set mr(z,i) = 1; 

v. If y G £ and z G .5s, we reset my(z,i) = 0 and we set mr(z,i) = 1 
and my(x^,i) = 1. 

Finally, for every small vertex y' that appears on p such that 0 < I < 
j — 1, we reset myi(xl+1,i) = 0 and we set myi(x

l,i) — 1. 

If we are successful in constructing all the patches in every initial matching 
M-, we obtain disjoint matchings Mi, ...,MAJ such that U^M; = (-E(-Bi U 
Si) - E(Ri)) U £(£2 U S2) - E(R2). We now show that the marking and 
the reject graphs R\ and R2 satisfy the desired properties. 

A vertex v G B U S is an external vertex in at most 8rAi/ioi patches 

and an internal vertex in at most 8|-^/io] additional patches. So at most 

4TAi/10l ^ |A9/10 edges incident to v are rejected. Furthermore, since there 

are at most WS unmarked vertices missed in each M-, \E(Ri)\ + |£?(i?2)| < 
Aiie^A^o < A17/io. 
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Note that we add or delete less than 4|-^)10-, < ^A9/10 - 26 real or fake 
marks to any vertex v, in addition to the marks already assigned to v in the 
marking step. It follows that \mAl(v) — ^dei(v)\ < |A9/10 for every v G B, 
satisfying 4.1. Because we never add a real mark to any v G B — Bs during 
the patching, it follows that 0 < mr(v) < defr(u). Now, v G Bs was initially 
marked in at least ^defr(v) + \8 and at most ^defr(u) +15 initial matchings. 
Thus, \m^{v) - \defr{v)\ < ±A9/10, and since def» > 2A9/10, it follows 
that 0 < mr(v) < deir(v). The marking is then a valid one. 

If we fail to construct a patch: 

3.5 If Xl+l = Yl for every I = 0,...,6[A1/201, we pick the smallest j > 1 
such that |yj| < |XJ| + ^A19/20 (we prove in claim 10 below that this 
inequality must hold for some j). Let F\ and F2 be vertices in B\ and 
B2 j respectively, that are not usable and let X = X7 and Y = YJ U F\, 
if Y* CBxU Si, ovY = YJ U F2, if Y^ C B2 U S2. 

Claim 10 (X, Y) forms a fail pair in (Bi U Si, B2 U S2). 

Before we prove the claim, we give lower bounds on the degrees of vertices 
in F. Since dF{v) = d(v) - (Ax - mf1 («)), it follows that \dF(v) - \d(v)\ < 
iA9/io Furthermore, since d%iVSi{vi) < A(Ri) < |-A9/10 for every vx G 

Bi, it follows that d^2US2(vi) > \d{v{) - A9/10. Equivalently, d^iUSi(v2) > 

^(ui)-A9/10. 

Proof: We assume that x G Bi n Bl; a symmetric argument does the job 
for x G B2 n Bl. Since there are at most 2 external vertices in every patch 
and there are at most 16£ patches per matching (by claim 9), it follows that 
the number of externally unavailable vertices in Bi is at most 8A1'1016(J so 
that |i*i| < A7/10. A symmetrical argument gives |i<2| < A7/10. 

We note that \X^\ = \Y°\ > dF
2US2(x) - \F2\ > \A - 2A9/10. If we as- 

sume that \Yl\ > \Xl\ + iA19/20 for all 1 < / < 6[A1/20], it follows 

that |X6rAl/2°T| > 3A > \Bi\, a contradiction. So we must have \Yj\ < 
\X3\ + I A19/20 for some j between 1 and tfA1/20]. 

In order to show that the pair (X, Y), as constructed in the procedure forms 
a fail pair in (Bi U Si,B2 U S2), we must show that the following three 
conditions hold. We prove them only for the case when X C Bi — Bs and 
Y C B2 U S2 (the case X C B2 - Bs and Y C Bx U Si is symmetric): 
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|y| < pq + A19/20 

Proof: |V| = \Yi\ + \F2\< \X{\ + ±A19/20 + A7/10 < \X\ + A19/20. 

For all vEX: dY(v) > ±A - A19/20. 
Proof: For every »el, dy(v) > d£(v) = d%2US2(v) > \d{v) - A9/10. 
Since every »£l belongs to B-Bs, it follows that d(v) > A-2A9/10 

implying dY(v) > ±A - A19/20. 

|ß!-X|>iA-A19/20. 
Proof: Since m(J32, i) > \A4/5 and |i<2| < A7/10, there exists a marked 
big vertex v £ B% — F2, such that v is usable, but d^(v) = 0. Thus, 
\B1-X\>d%1(v)>\A-A19'20. 

D 

4.1.2    The reject coloring pass 

We now attempt to construct the remaining disjoint matchings M^+i,..., 
MAI+A25 where A2 = [^A19/20], such that H = F- \jf^xM&l+i is a bipar- 
tite reduction of F (and thus G). 

The initial coloring 

1. We color the edges in E{R\) and E{R2) with A2 colors to obtain match- 
ings M'A +1, ...,M^ +A , balanced in Si and in i?2, such that 

u£}1M'Al+i = E{R1)UE{R2) 

using Fournier's edge-coloring algorithm and the balancing procedure. 

We can apply Fournier's algorithm because A(i?i), A(i?2) < A2 — 1. Since 
|£?(i?i)| + |£?(i?2)| < A17/10 and the initial matchings are balanced in B\ 
and in J52, it follows that \M'Ai+i n E(B)| < 4A4/5 for all» = 1,..., A2. 

The marking 

We define an initial marking of the big vertices that is proper over the initial 
matchings M'A +V...,MA +A   as follows: 
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2. For every v £ B, u £ S and i = 1,...,A2, we set mu(v,Ai + i) = 1 if 
(u, v) G M'A +j. We then equalize this marking in B\ and in #2 using 
the equalizing procedure. 

Since MA +1, ...,M^+A are balanced in B\ and in B2 and the marking is 
equalized in B\ and B2, it follows that the number of big vertices hit by 
M'Ai+i is 2\M'Ai+i n E{B)\ + ms(B, Ai + *) < IOA4/5, for all i = 1,..., A2. 
We remark that we only put fake marks in this step: we will put additional 
real marks in each iteration of the patching step. 

The patching 

For « = 1,2,..., A2 we recursively attempt to construct M^+% by augmenting 
M[ with a matching M* that we construct in H — F—M&1+i — ...—M&1+i-i. 

Let m^1+l(v) = ^2f^i% m(v,j). We attempt to construct M* as follows: 

3.1 Let Ei and Ei be the subsets of vertices in Bi and B2, respectively, 
that are hit by M'A +i, and let U\ and U2 be the sets of vertices v in Bi 

and B2 that are missed by M\ such that m^1+*-1(v) = def^1+i_1(v) 
(i.e. vertices with no remaining real deficiency in iteration i). Note 
that all vertices in F\ = Bi — E\ — U\ and F = B2 — E2 — U2 are 
missed by M'A +i and have some remaining real deficiency. We set 
mr(v, Ai + i) = 1 for every v € FiU F2. 

Remark: |^i|,|£?2| < IOA4/5. 

3.2 We attempt to construct a matching M* in the bipartite graph H D 
(Ui U Fi U Si, U2 U F2 U S2), such that each vertex in Ui U f72 is an 
endpoint of a matching edge. If successful, we obtain MA1+J by adding 
M* to M'A +i. We adjust the marking so that mu(v, A\ + i) — 1 for 
every v € U\ U C/2 such that there is u £ S and (w,n) G M*; we also 
reset mr(v,Ai + i) = 0 for every v G F\ U F2 for which there exists 
UGU1UU2 and (u, it) G M*. 

If we successfully construct matchings M/^+i, —, MAj-f A2 then H—MAJ+I — 

... — MAX+A2 is obviously a bipartite reduction of F. 

3.3 If not successful, we either find the sets X C U\ and y' = Nff2UF2US2(X) 
such that |X| > \Y'\ and we set Y = Y' U £?2> or the sets X C.U2 and 
y = NgiUFiUSi (X) such that |X| > |y'| and we set Y = Y' U JE7X. 
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Claim 11  (X, Y) forms a fail pair in (B\ U S\,B2 U S2). 

Proof:    We assume X C U\; the proof for X CU2 follows by a symmetric 
argument. We must show that the following three properties hold: 

|Y|<|X|+A19/20. 
Proof: \Y\ < \Y'\ + \E2\< \X\ + A19/20. 

dY(v) > 5A - A19/20 for all »el: 
Proof: Every v 6 X satisfies dH(v) = A — Ai — (i — 1), so that 
dY(v) > d$(v) = d$2VS2(v) = dH(v) - dfiU5i (v) > \A - 6 - (i - 1) - 
iA9/10 > ±A - A19/20. 

\Bx -X\>\A- A19/20. 
Proof: If there exist v € B2 - Y, then d%(v) = 0 and dß(v) > 
dF

Bi (v) - A2 > \d{v) - 2A9/10 > |A - A19/20. 

Suppose now that B2 C Y. Then, 0 < \Bi - X\ < \Bi\ - \X\ < 
\B2\ - \Y\ + IOA4/5 < IOA4/5. It also follows that \Y n 52| < IOA4/5. 
Since \B~\ > 2A9/10 and because (B\ \JS\,B2\JS2) is a split partition 
of (BUS), it follows that \B~ nB\\ > A9/10. Clearly there must exist 
some vertex v € XnB~. Thend%2{v) < \dB{v) + \8 < iA-A9/10+J. 
Since v E X, however, df2US2(v) = dH(v) - d%lUSl(v) > A - Ai - 
(» - 1) - |A9/10 > IA - \ A9/10 - 8. So, dg(v) > iA9/10 - 26, which 
implies \Y f] S2\ > ^A9/10, contradicting \Y n 52| < IOA4/5. 

D 

4.2    The medium deficiency case 

We now consider the case of a medium deficiency graph G = (B U S, E), 
which we define as graphs with deficiency def(£?) > A12/10 but with fewer 
than 2A9/10 big vertices of deficiency greater than A9/10. In other words 
the set B~ = {vEB : def(«) > A9/10} is of size at most 2A9/10. Note that 
this implies that def(B) < 2A9/10iA + 6AA9/10 = 7A19/10. 

As B — B~ is "almost" regular and "almost" equal to the whole graph, 
we will apply essentially the same patching technique we developed in the 
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regular case by insisting that all patches go through B — B~. The difficulty 
now is what vertices missed by an initial matching to patch. So, we take 
more care in defining the marking in both coloring passes. 

4.2.1    The first coloring pass 

We construct, in the first coloring pass, disjoint matchings Mi,..., MAX such 
that F = G — Mi — ... — MAX is a reduction of G and U^Mj contains 
E(Bi U Si) - E{Ri) and E(B2 U S2) - E(R2) where Ri and R2 are reject 
subgraphs of Bi U Si and B2 U S2, respectively, of maximum degree less 
than A9/10 such that \E(Ri) f) E(Bi)\ = \E(R2) n E(B2)\ < ^A19/10 and 
\\E(Ri) n E(Bi,S!)\ + \E(R2) n E(B2,S2)\\ < 4AX. For technical reasons, 
we insist that dg(v) > \dß{v) — A9/10 which will be true if we require our 
marking to satisfy 

\mAl(v) - idef(t;)| < ^A9/10 (4.3) 

Furthermore, as we need substantial amounts of deficiency remaining for 
the reject coloring pass, but we also need substantial number of marks, we 
require that the marking in the first coloring pass satisfies, for k = 1,2, 

^dei(Bk) < mAl (Bk) < ^def(Bk) (4.4) 

The initial matchings 

We first construct the matchings M[, ...,M'Ai, balanced in Bi and in B2, so 

that U^M? = E(Bi U Si) U E{B2 U S2). To do this we apply Fournier's 
algorithm and the balancing procedure from section 3.2.2, exactly as we did 
in the large deficiency case of section 4.1. We observe that the number of 
matchings missing v € f?i is exactly Ai - dß-^uStiv), implying that more 
than ^deir(v) + |<5 matchings miss v, but no more than ^detr(v) + |<J. The 
same is true for v £ B%. 

The initial marking 

We define an initial marking that is proper over modified initial match- 
ings M[, ...,M'A , still balanced in Bi and B2 and still satisfying U^M/ = 
E(BIUS1)UE\B2US2): 
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2.1 We initially set mu(v,i) = 1 for every u G S, v G B and ? such that 
(u,v) eM[. 

2.2 Then, for every v G B, we define a target i(v) equal to [^defr(u)] or 
L|defr(u)J so that <(5X) = £„eBi <(«) = [^def^i)] and t(52) = 
E,eß2*W = r^efr(52)l. 

2.3 For every v E B,we pick a set "R oit(v) matchings (among M{,..., M'A ) 
missing u and we set mr(v, i) = 1 for every M/ G 71. 

2.4 We equalize the marking in B\ and B2 using the equalizing procedure 
from 3.2.3. 

Note that, while M[,...,M'A may be modified in step 2.4, they are still 

balanced in Bx and in B2 and UAl
xM/ = J5(Si U Si) U E(B2 U S2). 

Claim 12 

^de/tS*) + 4A2 < mAl(B*) < ^e/(£fc) (4.5) 

l-A1l5 + A<m{Bk,i)<^llQ (4.6) 

/or aZ/ i = 1,..., Ai and k = 1,2. 

Proof: We only prove the claim for A; = 1, since a symmetric proof will 
work for k = 2. Let B? = {v G £1 : defs(u) > 400A1/10}. We note 
that defs(Bi - B\) < I^OPA1/10 < 1200A11/10. We also note that 
j)deis(v) < ^defsW-ly/tä^JAV20 < mf» = defSl(t>) < ±def5(<;) + 
iv/def5(^)A1/20 < ^defs(«) for every v G B{. So, mAl(£i) < rofM-Bi) + 
defs(ßi - Bf) < ^defs(ßf) + 1200A11/10, and similarly mAl(£i) > 
^defs(BJ). 

It follows that mAl(Bi) = mAl(£i) + mAl(£i) < ^def(£i) + 1200An/io < 
^def(Bi) and mAl(B1) > ^def(Sx) - 1200An/io > ^def(Bi) + 4AX. 

Since ±A12/10 - \A < def(Bi) < A19/10 + |A in this case, and because the 
marking is equalized in B\, it follows that m(B±,i) < ■^-mAl(Bi) + 2 < 
§ A9/10 and m(Bi,i) > ±Ax/5 + 4.      D 

If \B\ is even, then mAl(JB2)-mAl(JBi) = i(defs(S2)-defs(Bi)) + ^(rf(52)- 
d(Sij) + [idefr(ß2)l - [±defr(B2)]   = cB + k where k =  \cs~\ or k = 
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[cs\. (Recall that cs = \{d(S2) - d(Si)).) If \B\ is odd, then mAl(£2) - 
mAl(Bi) = CB + k — \K where k = \cs~\ or k = [cs\. In both cases, 
0 < mAl(B2) — mAl(J5i) < ^A. Since the marking is equalized in B\ 
and in B2, it follows that \m(B2,i) — m(B\,i)\ < 2 for every % = 1,..., Ai. 
Furthermore, since 0 < \M[ n E{BX)\ - \M[ n S(JB2)| < 1, it follows that 
\n{B\,i) — n(B2,i)\ < 4, where n(Bi,i) and n(B2,i) are the numbers of ver- 
tices in B\ and in B2, respectively, that are missed by and are not marked 
in M[ (i.e. m(v,i) = 0). 

Preparing the matchings and the marking for patching 

In order to be able to apply our patching techniques, we require that n(5i, i) 
= n(i?2, i) for all i = 1,..., Ai. We take care of this by deleting up to 4 marks 
in every matching, while being careful not to delete too many marks from 
any one vertex: 

3. For every i = l,...,Ai, we delete \z\ marks from matching M/, where 
z = n(Bi,i) — n(B2,i), as follows: 

We repeat the following \z\ times: if z > 0 (resp. z < 0) 
we pick a vertex v € B2 (resp. B\) such that mr(v,i) = 1 
and v has not been picked in the previous 2A1/10 iterations, 
or mu(v,i) = 1 and neither u nor v have been chosen in 
the previous 2A1/10 iterations. In the first case, we just set 
mr(v,i) = 0, while in the latter we set mu(v,i) = 0 and we 
reject (u,v). 

In every iteration i, no more than 16A1/10 < |A6/5 < m(Bk,i)—4 marks are 
not available. We reject at most 4Ai small edges and no vertex is adjacent 
to more than 2^)w < 5A9/10 rejected edges. Similarly, no vertex v lost 
more than 2£}10 marks so \mAl(v) — |def(v)| < ^A9/10. 

Claim 13 The following properties are satisfied by the final marking (de- 
fined after step 3.) for k = 1,2 and all i = 1,..., Ai; 

(i) ±def(Bk) < mAi(Bk) < ^def(Bk), 

(ii) iA1/5<m(JBfc,«)<§A9/10, 

(iii)  \8 < n{B$,i) = n{B^,i) < 86. 
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Proof: The first two conditions easily follow from our above discussion, so 
we only prove (iii). Every v G B is unmarked in and missed by Ai — mAl (v) 
initial matchings, i.e. by at least \5 and at most \8 of the matchings 
M{,..., M'A . Since these matchings are balanced in B\ and in B2, because 
the marking m is equalized in B\ and in B%, and because no more than 
4Ai small edges have been rejected, it follows that the number of unmarked 
vertices in Bk missed by M[ is at least (Ai)-1(f £iA - 4Ai) - 4 - 2 > \b 
and at most (Ai)-1(|tf3A) + 2 < 86.      D 

The patching 

For i = 1,..., Ai, we recursively construct Mj by augmenting the vertex dis- 
joint patches we construct mF = Bf)(G —R\—R2—M\ —...—Mj_i) between 
pairs of unmarked big vertices missed by M[. Note that only big edges may 
be rejected in the augmentations. If we fail to construct a patch between 
two unmarked vertices missed by some Mt, we will show the existence of 
and construct a fail pair (X,Y) in (B]_,B2). 

Let x\,...,xs be the unmarked big vertices in B\ missed by M[ and let 
2/1, ...,ys be the unmarked big vertices missed by M[ (where \b < s < 95.) 
For r = 1,..., s, we construct the patch PT in between xr and yr as follows: 

4.1 We first define unavailable and usable vertices.  We call v E B un- 
available if it belongs to any one of Pi,...,Fr_i or to any one of 
the patches constructed for one of the previous 2 [A1/10] matchings 
(M/_1,...,Mj'_2|-Al/10-|). We call v € B usable iiv = yr or (v,u) € M\ 
and neither v nor u is unavailable. 

4.2 We recursively build the sets X1 and Yl for 0 < / < 6 [A1/20] as follows: 

x° = K}, 
Yl = {v 6 B : v is usable and 3u € X1 such that (it, v) € E(F) D 

S(Si,S2)}. 
X1 = {v E B : 3u G y'"1 such that («,«) G M/} 

We observe that Yl > Xl+1 for every / = 0,..., 6[A1/20] and Y* > X^+1 for 
some j if and only if yr G Y^. 

4.3 If yr G yj for some 0 < j < 6[A1/20], we construct the patch defined by 
the sequence of vertices xr = xü,y®,xl,yl, ...,yi~l,xi,yi = yr where 
xl E X1, yl G Yl, (xl,yl) G E(F) D E(BUB2) and (i/,^1) G Af?. 



74     CHAPTER 4.   THE LARGE AND MEDIUM DEFICIENCY CASES 

We observe that each patch contains the same number of edges from E(B\) 
and from E(B2) and that in every augmentation an equal number of edges 
in E(Bi) and in E(B2) are rejected. It follows that \E{RX) n E(BX)\ = 
\E{R2) f) E(B2\. Furthermore, we reject at most 2^}10 < ^A9/10 edges 
incident to any particular vertex. Finally the total number of edges in B\ 
or in B2 we reject is less than AilO^fA1^] < ^A19/10. 

4.4 If there is no Y^ containing yr, then we pick the smallest j > 1 such 
that \Y*\ < \Xi\ + ±A19/20. We will show in claim 14 below that 
j < 6[A1/20] - 2. Let Fi and F2 be the vertices in Bi and B2: 

respectively, that are not usable, and let E\ and E2 be subsets of B\ 
and B2, respectively, missed by the big edges of M\. We set Y = 
YJ U F2 U E2 if Y* C B2 or Y = Y* U Fx U E2 if F'' C #i and 
X = {v e Xi : d$(v) > ±A - A19/20}. 

Claim 14 (X, V) is a fail pair in (B\,B2). 

We note that d%(v) > |def(v) - A9/10 for all v G -B since 4.3 is satisfied, 
implying d%2(v) > \ def(v) - 2A9/10 for all v e Bx and dF

Bi{v) > £def(t>) - 
2A9/io for all v € ß2 

Proof:    To simplify notation, let x = xr e Bi and y = yr € B2. 

Since a patch contains at most 6[A1/20] vertices in Bi, and since there are 
at most 86 patches per matching, it follows that 

|F1|<2LA1/ioj8^6[A1/20l<iA19/20 

A symmetrical argument gives \F2\ < |A19/20. 

It follows that IX1! = \Y°\ > d%2(v) - \F2\ > ±A - |A19/20. If we assume 

that \Yl\ > \Xl\ + iA19/20 for all 1 < I < ^A1^] _2, then |x6rAl/2°l-2| > 
3A > |ßi|, a contradiction. 

So we must have \Y'\ < |J^'| + ±A19/20 for some j between 1 and T6A1/20-] _2j 

and we pick the minimum j satisfying this property. Then the pair (X, Y), 
as constructed in step 4.4 forms a fail pair in (Bi,B2) if the following 3 
conditions are satisfied: 
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|y|<|X| + A19/20. 
Proof: We assume X C B\ and Y C B2; a symmetric argument 
follows when IC^andFcßi. We note that |F| = \Y'\ + \E2\ + 
\F2\ < \Xi\ + ^A19/20 + 85 + I A9/10 + |A19/20 < pp| + §A19/20. If 
»eP-I then d£2(v) < IA - A19/20 and dB(v) < A- A19/20, 

implying oeß_n5i. Since \B~ C\BX\< ±A19/20, i follows. 

For all vEX: dY(v) > ±A - A19/20. 
Proof: This follows by the definition of X. 

If X C Bx then \BX\ - \X\ > §A- A19/20, or if X C B2 then |S2| - |X| > 
i A - A19/20. 
Proof: If J Cßi then y must belong to B2 — Y and d^ (y) = 0. Since 
d%x(y) >\A- 2A9/10, it follows that |£i| - \X\ >\A- A19/20. 

If X C B2, then d£i+1(y) = 0 and dF
Bi{y) > A A - 2A9/10, so that 

\Bx -Yi\ = \Bi - Xi+l\ >\A- A9/10. So, there must exist a vertex 
v £ B\ — X?+1 with (v,u) € M[ such that v and u are usable. Since 
v G Bl - X^+1 however, d£(u) = 0. But d^ («) > ±A - 2A9/10 and it 
follows that |J5I - X| > |A - A19/20. 

D 

4.2.2    The reject coloring pass 

After the first pass has been completed and the matchings M\,..., M&x have 
been deleted, we obtain the reduction F = G — U^Mj of G. In the reject 
coloring pass, we construct the disjoint matchings MA1+I,...,MA1+A2 such 
that U^2iMAl+j contains E{Rl)\JE{R2) and H = F-\J^M^1+i has degree 
A — Ai — A2, so that H is a bipartite reduction of G. 

The initial matchings 

Let k be the largest integer less than or equal to AA19/20 such that A2 — k 
is even (recall that A2 = [^A19/20], so that A2 - k > |A19/20). We first 
color the small edges of R\ and R2 with k colors: 

1.1 We color E{Rl) n E{BU Si) and E{R2) n E(B2,S2) with k colors using 
Fournier's algorithm and we obtain disjoint matchings M'A +1,..., M'A +k 

such that 
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U$=1M'Al+i = (J5(i?i) n E(BU St)) U (E(R2) n E(B2, S2)) 

We color the big reject edges with the remaining A2 - k colors: 

1.2 If \B\ is even, we color E(Ri) n E(B{) and E(R2) n £7(J32) with A2 - fc 
colors and we use the procedure from 3.2.2 to obtain disjoint matchings 
M'A +k+v •••)^A1+A2' balanced in B\ and in J32, such that 

uf=
2
fe+1MAl+i = (E(RX) n E(BX)) U (£(i?2) n E(B2)) 

Since |£;(Bi)n£;(ßi)| = |£(i?2)n£(52)| < i^A19/20 it follows that |M^i+J.n 
£(#i)| = \M'Ai+ir\E(B2)\ < iA19/20 for every * = k + 1,.., A2. 

1.3 If|ß|isodd,wecolorE(Äi)nJB(JB1)andJB(JR2)nE(ß2)with/ = \{A2- 
k) colors and we use the procedure from 3.2.2 to obtain temporary 
disjoint matchings M", ...,M" balanced in B\ and in B2 such that 

\Ji=1M!' = (E(R!) n E(B±)) U (E(R2) n £?(52)) 

Note that |Af/' D £(#i)| = \M'j n £(£2)| < ±A19/20 for every i = 1, ...,l. 

The marking 

We define a marking and, in the process, modify the matchings M'Ai+1, 
...,M'Ai+A2 so that n(Bi,Ai + i) = n(B2,A1 + i) for all i = 1,...,A2. We 
define the marking in the first k matchings, for % = 1,..., k, as follows: 

2.1.1 For every i = 1,..., A; and for every edge (u, v) £ M'Al+i (where u € S 
and v £ B) we set mu(v, Ai+i) = 1. 

2.1.2 We balance the marking in i?i and B2 over the matchings M'Ai+1,..., 
M^ +fc using the balancing procedure from 3.2.3. 

Since \\E(Ri) n £(£i,Si)| + \E{R2) n £?(S2,52)|| < 4AX, it follows that 

lMA1+J < 25A1/20 < A*> for all * = 1, ...,&. 

After 2.1.2, the difference between the number of marks in Bi and in B2 can 
be as high as A1/10. To obtain n(Bi,Ai+i) = n(B2, Ai+i) for all« = l,...,k, 
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we must put additional marks to every matching M'A +v ...,M'A +k. To 

describe this additional marking, we find it useful to denote Yl)=i m(vi *') 
by mj». 

2.1.3 We iteratively add additional marks to every MA+i for i = 1,..., k as 
follows: 

If there are z more unmarked vertices in B\ than in B2 we pick z differ- 
ent vertices vi,...,vz in B\ with defUl(ui) > m^1^!),...,def^i^) > 
mluz

l{vz) where Uj = r or Uj G 52 for every j. We insist that u\ = Uk 
if and only if ui = u^ = r. We then set mUl(vi, Ai + i) = 1, ..., 
mU2(t)z,Ai + i) = 1. If #2 has more unmarked vertices than B\, we 
use the obvious symmetric procedure. 

The remaining deficiency after the first coloring pass is greater than ^A12/10. 
The total that could be used in 2.1.1 - 2.1.3 is less than 2/cA1/10 < ^A21/20. 
So, at any iteration of 2.1.3, there is at least j^A12/10 available deficiency, 
implying that we can choose v\, ...,vz,ui, ...,uz greedily. 

We now look at the remaining A2 — k matchings. If \B\ is even, we actually 
put no marks in these matchings. If \B\ is odd, however, we must put a 
mark in B\ in each matching. 

2.2 If |JB| is odd, for i = 1, ...,l, we pick two different vertices v and v' in 
B\ with defUl(ui) > m„~1(ui) and deiU2{v2) > rnl~2

l{v2) such that 
(v\,v2) & M". (We easily can do this by the same argument as 
above.) We then split M" into M'A +fc+2j_! and M'A +k+2i suc^ *^a* 
M'Al+k+2i_x misses vu M'Ai+k+2i misses v2, {M^^^nE^)] = 

\M'Ai+k+2i_1nE(B2)\ < iA^andlM^^^nE^)! = |M^i+fc+2.n 
E(B2)\ < iA9/10. Finally, we set mUl{vx, Ai + k + 2i - 1) = 1 and 
mU2(v2,Ai + A; + 2i) = 1. 

When done m(Si, Ai + i),m(B2, Ai + i) < A1/10 and n(Si, Ai + «') = 
n{B2,A1+i) for i' = 1,...,A2. 

The patching 

For i = 1,..., Ai, we recursively construct M^+i by augmenting M'A +i in 
H = F — MAX+I — ... — MAJ+J-I so that all unmarked big vertices missed 
by M'Ai+i are hit by a big edge of M^1+f. 
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3. Let U\ and U2 be the sets of unmarked big vertices missed by M'Ai+i. 
We attempt to construct a perfect matching M* in the graph induced 
by the vertex partition (Ui, U2) in H. If successful, we obtain M&1+i 
by adding M* to M'Al+i. 

If not successful, we find the sets X' C U\ and Y' = Nff2(X') such 
that \X'\ > \Y'\. Let F\ and F2 be the marked vertices in B\ and in 
B2, respectively, and let E\ and E2 be the vertices in B\ and in B2, 
respectively, that are hit by a big edge of M\. We set Y = Y' U F2 U E2 
and X = {veX' : dY(v) > 5A - A19/20}. 

Claim 15 (X,Y) forms a fail pair in (Bi,B2). 

Proof:    The following three properties must hold: 

|y|<|x| + A19/20. 
Proof: \Y\ = \Y'\ + \F2\ + \E2\ < |X'| + A1/io+ iAi9/20 < |x| + A19/20. 

dY(v) > IA - A19/20 for all veX. 
Proof: By definition of X. 

\B1-X\>\A-A9/10. 
Proof: Since X" is non-empty, there exists v € X". Since X" C U2 C 
B2, v is a big vertex and df (v) = 0.   Then |5i - X\ > d%x(v) > 

dF
Bi(v)-A2>{A-A™/™. 

D 



Chapter 5 

The small deficiency case 

If the Vizing graph G = (B U S, E) has deficiency less than A12/10, we find 
it convenient to identify most of the small vertices, while keeping multiple 
edges, so that the degree of all but at most 3 small vertices is more than \ A 
(and of course at most A). Then, with some care, we treat these new "high 
degree small vertices" as if they were big. 

We start this chapter with a description of the identification procedure and 
the statement of the modified main theorem, a theorem about A edge color- 
ing large degree graphs with identified small vertices that is equivalent to the 
main theorem. In section 5.2, we discuss the modifications we must make to 
the definition of a split partition in order to accomodate the multiple edges 
created by the identifications. We also describe a randomized procedure 
that with positive probability returns a "modified" split partition. Finally, 
we present the first of our two edge-coloring algorithms for graphs of small 
deficiency in section 5.3. We leave the last, more technical algorithm for 
graphs of smallest deficiency to chapter 6. 

5.1    The identification procedure 

We now identify the vertices in 5 of a Vizing graph G = (B U S, E) to 
obtain the graph G* = (B* U S*,E*) where B* is the set of vertices of 
degree greater than ^A including all vertices in B and all identifications 
of degree greater than |A and S* is the set of vertices of degree at most 
\A.   We use a recursive procedure to construct G*.  In order to describe 

79 
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this recursive identification procedure we extend the notion of deficiency to 
every vertex v in B*: let def(w) = A — dß*(v), defr(u) = A - d(v) and 
defs*(v) = def(u) — deir(v) = ds*(v). 

We describe now the identification procedure. We set, initially, B* — B and 
S* = S. We identify the vertices in S* recursively a follows: 

If \S*\ > 2 and def(5*) > 2(defs/(B*) + defs» (£*)), where s' 
and s" are the two smallest degree vertices in S*, we identify s' 
and s" to obtain s* while keeping any multiple edges; otherwise 
we stop. We put s* into S* if its degree is at most ^A or into 
B* if its degree is more than ^ A. 

We call the resulting multigraph G* = (B* U S*,E*) a multi-Vizing re- 
duction of the Vizing graph G = (BliS,E). We call vertices in B* big and 
vertices in S* small. Note that B* includes all (non-identified) vertices of 
B. We will also call big all edges in E(B*) and small all edges in E(B*, S*). 

Before discussing how the multi-Vizing reduction G* can help us prove the 
main theorem, we need to understand the properties that G* satisfies: 

Claim 16 A multi-Vizing reduction G* = (B* U S*,E*) of a Vizing graph 
G = (B U S,E) of deficiency less than A12/10 satisfies: 

a. def(B*) < A12/10, \B* - B\ < 2A1/5 and dB*-B{v) < A3/5 for every 
vGB, 

b. The graph induced by vertices of B in G* is equal to the same graph in G. 
(B* U S*) - B is an independent set with \S*\ < 3 and if def{B*) > 2A 
then \S*\ < 1, 

c. The multiplicity of an edge in E((B* U S*) — B,B) is less than VA; 
if ß(u, v) > 2 for some vertices u G B* — B and v £ B such that 
def(u),def(v) > |A-A9/10 then ß(u,v) < 3 and def(v) < §A + A9/10, 

d. G* = (B* US*, E*) is weakly Vizing, i.e. dß*(v) > ^A for every v € B*, 
dß*{v) < ^A for every v € S*, and dß*(v) + dB*-v(u) > A for all 
u,v G B*. 

Note that we extend the definition of a weakly Vizing graph from simple 
graphs to multigraphs. 
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Proof: At any step of the identification procedure, two vertices s' and 
s" in S* are identified to obtain s*. If d(s*) > ^A then s* is put into B* 
which decreases the fake deficiency of B* by d(s*) > |A, but which also 
increases the real deficiency of B* by A — d(s*) < |A. If d(s*) < |A 
then s* is put into S* and the deficiency of B* stays the same. So, the 
deficiency of B* that we obtain through the identification procedure cannot 
be greater than def(B), and it follows that def(S*) < A12/10. We note 
that the number of edges between B* U S* — B and B is also at most 
defs* (B) < A12/10. Since every vertex in B* —B has degree greater than |A 
we obtain \B* — B\ < 2A1/5. The last point we need to prove property a is 
that d%l_B(v) < A3/5 for every v G B. We first note that d%(u) > d<§(v) for 
every u G S adjacent to any v G B (since G = (BUS, E) is Vizing). It follows 
that no vertex in B can have A3'5 edges to small vertices of G (otherwise, 
def(J3) > (d<§(v))2 > A12/10). This implies that d%_B(v) < A3/5. 

Property b. holds for G* by construction. 

If an edge (u,v) G E(B* US* — B,B) has multiplicity m > VÄ then u 
has been obtained partly by identifying m small neighbors of v in G; by 
the earlier remark, however, each small neighbor of v has degree more than 
ds(v) > m in G, which would imply that u has degree more than m2 > A 
in G*. If jj,(u,v) > 2 for some vertices u. € B* — B and v € B such 
that def(u),def(v) > |A — A9/10 then the deficiency of v in G is at least 
i A - A9/10 - A3/5 > |A - 2A9/10. Then, every small neighbor (i.e in 5) 
of v in G has degree greater than |A — 2A9'10. Since the degree of u in G* 
is less than |A + A9/10, no more than three small neighbors of v in G are 
identified to form u, implying ß(u,v) < 3. Furthermore, if the deficiency of 
v in G* is greater than |A + A9/10 then the deficency of v in G is greater 
than |A + 5A9/10 and every small neighbor of v in G has degree greater 
than |A + 5A9/10, implying that the degree of u in G* is at greater than 
I + A9/10 contradicting our assumption. 

Finally, we show that property d holds, i.e we show that dß* (v)+dB*-v(u) > 
A for any two vertices u and v in B*. This is true if vertices u and v are 
both in B (since the graph induced by B is weakly Vizing itself) or both in 
B* — B (since B* — B forms an independent set). If v G B and u G B* — B 
then dß*(v) + dß*-v(u) > A holds if they are not adjacent. If they are 
adjacent, let u' G S be a neighbor of v in G that was identified with some 
other small vertices to obtain u; then dß*_v(u) +dß* (v) > dB

!_v(u') + \{x G 
B : (x,v) G E and dG(x) = A}\ > A follows since G is Vizing.      D 
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We will often just speak of a multi-Vizing reduction G* = (B* US*,E*) and 
assume that it is obtained from a Vizing graph G = (BUS,E) of deficiency 
less than A12/10. 

We can discuss now how G* can help us prove the main theorem. We first 
note the obvious fact that a A edge coloring of G* is easily extendable to 
G. Furthermore, if a subgraph H of B is forbidden in G*, then H is also 
forbidden in G; recall that a subgraph H of B is forbidden if its minimum 
degree 8(H) > A - A79/80 and either: 

(i) H is bipartite, or 

(ii) \B - H| > ±A - A79/80 

Let F be an overfull subgraph of G* of maximum degree A (recall that F 
is overfull if E(F) > ±A(\V(F)\ - 1)). We extend the notion of a trivial 
overfull subgraph, originally defined in the case of Vizing graphs, to multi- 
Vizing reductions as follows: F is trivial if it has degree A and F = B* — v 
for some v 6 B*, F = B* or F = B* + u for some u E S*. We also extend 
the trivial lemma (lemma 17) as follows: 

Lemma 20 (multi-trivial) Let G* — (B* U S*,E*) be a multi-Vizing re- 
duction of the Vizing graph G = (BUS, E) of maximum degree A containing 
an overfull subgraph of degree A.  Then one of the following must hold: 

(i) G* contains a trivial overfull subgraph, or 

(ii) G* contains a forbidden subgraph H in B. 

In addition we will show below that: 

Lemma 21 LetG* = (B*US*,E*) be a multi-Vizing reduction of the Vizing 
graph G = (BUS, E) of maximum degree A. If G* contains a trivial overfull 
subgraph F then F is a trivial overfull subgraph of G too. 

The above discussion and the two lemmas 20 and 21 show that in order to 
prove the main theorem for Vizing graphs of deficiency less than A12/10, it 
is sufficient to prove: 
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Theorem 22 There exists Ao such that for all Vizing graphs G — (BUS, E) 
of maximum degree A > Ao satisfying \B U S\ < 6A and def(B) < A12'10, 
one of the following holds for the multi-Vizing reduction G* = (B* l)S*,E*) 
ofG: 

(i) G* contains a trivial overfull subgraph, 

(ii) B contains a forbidden subgraph H, 

(iii) G* is A edge colorable. 

Furthermore, there is a procedure which runs in 0(2" ') time that will out- 
put either a A edge coloring of G*, a trivial overfull subgraph of G* or a 
forbidden subgraph of B. 

We prove this theorem by designing, and proving the correctness of, two 
algorithms that attempt to color with A colors the edges of a graph of 
small deficiency. We apply the first algorithm (described in section 5.3 of 
this chapter) to graphs with 2A < def(i?*) < A12/10. The second, more 
technical algorithm deals with graphs with def(i?*) < |A and is dicussed 
in chapter 6. We will show that both algorithms fail only if G* contains a 
trivial overfull subgraph or B contains a forbidden subgraph. We now prove 
lemma 20: 

Proof: Let F be an overfull subgraph of G* of maximum degree A, and 
let us slightly abuse the notation by denoting by F the set of vertices of the 
graph F. 

We first remark that the set R = {v G F : dp(v) < A — \/Ä} is smaller than 
\/Ä. Thus the graph H induced by (F — R) D B has minimum degree greater 
than A - 2\/Ä - A3/5 (since dB*-ß(v) < A3/5 for every v G B* by claim 
16). If H is not a forbidden subgraph of B then \B-H\<\&- A79/80. 

Consider the set C = {v G B - F : dF(v) > y/Ä}. Clearly, \C\ < y/E. Note 
that dß{v) > 5A for any v in B and dp{v) < y/Ä for any v G B — F — C. 
So, if B — F — C is not empty then \B — F\ > 5A — -\/Ä which in turn gives 
\B — H\ > 5 A — A79/80 contradicting our assumption that H is not forbidden 
(note that \F-H\< \R\ + \B* - B\ < 2\/Ä. Clearly then, B - F = C and 
\B-F\ <\/Ä. Note that if \B-F\ > 2 then \E(F,B-F)\ > ||A-3\/Ä> A 
which contradicts the fact that F is overfull. We thus obtain \B — F\ < 2. 
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If B - F = {u,v}, then \E(F + u + v)\ = \E(F)\ + dB{u) + dB-u(v) > 
%A(\V(F)\ - 1) + A = %A(\F + u + v\ - 1) and F + u + v is an overfull 
subgraph of G as well. So, in any case, there exists an overfull subgraph 
F' of maximum degree A such that \B — F'\ < 1. A similar argument also 
show that \B* - F\ < 1. 

Suppose now that \F' DS*\ > 2, and let u and v be two vertices of F' n S*. 
Then |£(F')| = \E(F'-u- v)\+dF(u) + dF{v) < %A{\F'\ - 2) - (dF(u) + 
dF(v)) + (dF(u) + dF{v)) = ^AdF'l - 2) contradicting the fact that F' is 
overfull. So, \F'f\S*\<l. 

Finally, we show that if \B - F'\ = 1 and \SV\F'\ = \, then B itself must be 
overfull. This would prove our claim that G* must contain a trivial overfull 
subgraph. Suppose that F' = B* - v + it for some v € B* and u E 5*. Then 
|£(F')I = |£?(i5"-u)| + dF(«) < \E(B*)\-dB*(v) + dB*(u) < \E{B*)\ since 
dB'(«) ><M«). Since |^(F')| > jAd^'l - 1) = ^A(|5*| - 1), B* must be 
overfull. 

D 

Finally we prove lemma 21: 

Proof: It is sufficient to prove that each identification satisfies this prop- 
erty. Let G* be obtained from G by identifying s' and s" in S into s* in 
5*. Let F be the overfull graph induced by B*, B* - v for some v G B* or 
5* + s for some ix € S1*. If s* <£ V (F), it is easy to see that F is also a trivial 
overfull subgraph of G. We now show that s* cannot belong to V(F). This 
will prove our lemma. 

Assume s* € V(F). If V(F) = B* then since F is overfull in G* we have 
that def(5*) < A. If V(F) = B* -b then since JF is overfull in G* we have 
def(B*) < 2def(ü) < A. Finally if V{F) = B* + «-then since F is overfull in 
G* we have def(B*) < 2def„(ß*) < A. However, def(ß*) < A implies that 
inG 

def(5*) - defy (B*) - defs»(S*) + (A - defy (B*) - def>(B*)) < A 

(where the deficiencies are taken in G\) which contradicts our identification 
assumption that def(5*) > 2(defy(S*) - ds»{B*)).      □ 
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5.2    A modified split partition 

In 2.5.1 we defined and constructed a split partition (B\ U S\,B2 U 52) of 
a simple Vizing graph G = (B U S, E). We define, similarly, a modified 
split partition (Bf U S*, B\ U S\) of the vertices of a multi-Vizing reduction 
G* = (B*\JS*, E*). In a partition of the vertices of G*, we require the degree 
of any vertex, and not just its neighborhood, to split about evenly between 
the two sides of the bipartition. While this is a non-issue in simple Vizing 
graphs, it is something we must worry about in multi-Vizing reductions with 
multiple edges. 

Recall that S* may have up to 3 vertices: let us add additional vertices 
so S* = {si,S2,S3} where d(si) > d(s2) > d(ss) > 0. Let 61,62, ■••,^io 
be the ten largest deficiency vertices in B* such that def(6i) > def(&2) > 
... > def(frio). We set Ai to be the smallest even (odd) integer greater 
than ±A + A3/4Inn if \B*\ is even (odd), and 6 = Ax - ^A. A partition 
(B\ U S\, B%{JS%) of B* U S* is called a modified split partition if the 
following are satisfied: 

(a) B{ U 52* = B* and 0 < |B?| - \B%\ < 1, S% = {si, s3} and SI = {s2}. 

(b) For all v in B and for all X,Y C S of size less than 20 log A the 
following sets split within |An/20: 

NB(v),NB(X),NB(v)DNB(X):{w € NB(X) : dNB{Y)(w) > A-7A39/40} 

(c) Let Bx = BnB$ and£2 = BnB%. Then \dBl{v)-dB2(v)\ < ±A3/4log A 
for all v in (B* - B) II S*. 

(d) If |i?*| is even, bi £ B\ if i is odd, bi £ B\ Hi is even and def(5^ - 62 - 
64 - h - &s - 610) < def(i?2 - h - 63 - 65 - 67 - 69); if \B*| is odd then 
bi E B% Hi is even, bi € B\ if i is odd and dei(B^—b\—63—65—67—69) < 
def(B^ - 62 - 64 - h ~ b8 - 610); 

Let cB = |i?(i?i)| - \E(B2)\. If |5*| even, property (a) implies that cB = 
±(def(#2*) - def(BJ)). Property (d) then gives 0 < cB < £def(6) < \A. 
If |B*| is odd, property (a) implies that cB = |(A - (def(SJ) - def(5|))). 
Again, it follows from property (d) that |A < 5 (A — def(6)) < c# < ^A. 
In order to prove that a modified split partition exists, we show that the 
following procedure constructs with positive probability a modified split 
partition (B{ U S{, B\ U S%) of B* U 5*: 
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We order the vertices in B* by non-decreasing deficiency. For 
each successive ordered pair of vertices we switch the order of the 
pair with probability 1/2 and put the first vertex in the set B\ 
and the second in the set B\. If |J5*| is even, after all the vertices 
but the last 5 pairs have been assigned to B\ or I?|, we rename 
B* and B\ so that def(B{) < def(ß|) and we add b\, 63, 65, h 
and 69 to B\ and b2, 64, be, b& and 610 to J3{. If \B*\ is odd, 
after all the vertices but b\ through 69 have been assigned to B{ 
or B\, we rename B\ and B\ so that dei(Bl) < def(ß|) and we 
add 61, 63, 65, 67 and 69 to B\ and b2, h, h and b% to 5j". When 
done, we assign the vertices in 51*, if any, as follows: we put si 
and S3 into S% and s2 into S$. 

It is easy to see that the resulting partition satisfies conditions (a) and 
(d) of a modified split partition. Furhermore, our argument in claim 4 of 
section 2.5.1 shows that condition (b) holds with probability at least \. In 
the claim below, we prove that property (c) doesn't hold with probability 
at most \. So, the partitioning procedure returns a modified split partition 
with probability at least j. 

Claim 17 |dB» - dB2{v)\ < |A3/4lnA for all v in {B* -B)US*. 

Proof: It is enough to show that the probability is less then ^ for any 
particular v £ (B* -B)U S*. Let N = {vi,..., vk} be the neighbors of some 
v G (B* - B) U S*, and let H = {xi,...,Xk} be the set of corresponding 
multiplicities (i.e. ß{v,Vi) = Xi for all i = 1, ...,&.) We assume that no two 
vertices in N are paired in the partition step (if such pairs exist, then we 
can replace the pair, for this analysis, with one vertex whose corresponding 
multiplicity is equal to the difference between the multiplicities correspond- 
ing to the two original vertices). We also assume that N does not contain 
61,..., 610 as their placement in the partitioning procedure is not random. 

We observe that 1 < %{ < y/Ä for all i < 1,..., k and that x\ +x2 + ... + xk < 
A. Let D = Yj*i=i(2xi)2• We define a sequence of independent random 
variables {Xi}f=1 as follows: 

_ j   -Xi    , with p = \ 
-A-i -{ Xi       , with p 
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Then \dBlnN(v) - dB2nN(v)\ = \ YA=\ 
xil and 

k 

pr(iE^i>^lnA)<^ 
2 = 1 

since A > | is large enough. Our final observations are that \fD < 2A3/4 
and that (IB-N{V) < 10 vA, which together with the above imply our claim. 
D 

5.3    Case 3: 2A < def(£*) < A12/10 

We present an algorithm to color with A colors the edges of a multi-Vizing 
reduction G* = (B* + suE") of deficiency 2A < def(5*) < A12/10 where 
0 < d>B*(si) = defs^-B*) < |A. As usual, we assume that G* has large 
maximum degree A, that \B* + si| < 6A and that a modified split partition 
{B\,Bl + s\) of B* + s\ is provided. Since there is just one small vertex, 
we simplify the notation by denoting s\ by s. We will actually consider 
only graphs of deficiency greater than |A if \B*\ is odd. We will leave the 
discussion on how to color graphs with odd \B*\ and deficiency at most |A 
to the remaining case 4, which we discuss in chapter 6. 

The approach we take in our edge coloring algorithm is similar to the one 
we took in the medium deficiency case: after defining an initial marking 
that is proper over initial matchings M[,...,M'Ai, we modify the marking 
to prepare it for patching through which we obtain the final matchings 
Mi,..., MAX • We must overcome two new obstacles however. First, we must 
use more careful techniques when modifying the marking to prepare the 
iitial matchings for patching because little deficiency is available. Second, 
we must worry about the multiple edges of a multi-Vizing reduction during 
patching in both coloring passes. In this case, we set Ai to be the smallest 
even (odd) integer greater than or equal to 5A + A3/4 In A if A is even (odd) 
and A2 is the smallest even integer greater than or equal to ^A19/20. Let 
<J = Ai - iA. 

5.3.1    The first coloring pass 

In the first coloring pass, we will attempt to construct disjoint matchings 
Mi,...,MAl such that F = G* - U^Af? is a reduction of G* and U^M; 
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contains all edges in {E{B{) - E{RX)) U (E(B% + a) - E{R2)) where Rx and 
i?2 are reject subgraphs of B{ and B^ respectively, of maximum degree less 
than A9/10 such that \E{RX)\ = \E{R2)\ < ±A19/10. We will insist that 

dF
B* (v) > -^ A - 5 for all v £ B* (5.1) 

as it is necessary for patching in either coloring pass. In addition, if \B*\ is 
odd, enough deficiency must remain in B{ for the reject coloring pass 

dei(Bl)-m^(Bl)>^A-^6 (5.2) 

where mAl(B{) = X^i Y^vtB* m(v,i)- If we don't succeed in constructing 
Mi, ...,MA! as desired, we will construct a fail pair (X, Y) in (J3i,i?2)- We 
begin the construction of M\,..., MAX with an initial coloring and an initial 
marking. 

An initial coloring 

We observe that A(B[*), A{B%+si) < \A + \5 < Ai-\/A~, implying that we 
can apply Fournier's multigraph algorithm to Ai edge color B\ and B\ + a. 
So, we initially construct matchings M[,..., M'Ai, balanced in B\ and in JB|, 

so that U^M/ = E(B\) U £?(ß| + a), as follows: 

1. We color the edges of E(B*) with Ai colors and, using the procedure 
from 3.2.2, we obtain the matchings M/,..., MAi, balanced in B\, such 
that U^Mj1 = E{B{). We similarly construct M2, ...,MAl, balanced 
in -B| and covering EiB^ + a). Then, for every i = 1,..., Ai, we set 
M/ = M/UM2. % 

Note that 0 < \M}\ - \M? n #(-B|)| < 1 for every t = l,...,Ai, since 
0 < cB = |£?(SJ)|-|£;(B|)| < ±A < Ax. Actually, |M/|-|M?n£(i?2*)| = 1 
for exactly CB indices i. 

An initial marking 

We define an initial marking of the vertices that is proper over the initial 
matchings M[,..., M'Ai. (A marking is proper if m(v, i) = 1 implies that M[ 

misses v, for all i and v.) Since U^Mj is supposed to contain CB more big 
edges in B{ than in ü?|, we must define a marking that satisfies 
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mAl (£2*) - mAl (£?) = 1cB if \B* | is even (5.3) 

mAl (52*) - mAl (5^) = 2cß - Ai if \B*\ is odd (5.4) 

We require that all edges in E(B%,s) belong to Uj-JjMj', so the marking is 
also required to satisfy 

ms(v,i) = 1 for every i = 1,..., Ai and v G B* such that (s,v) G Mt'  (5.5) 

Finally, in order for our patching techniques to work, we must mark large 
deficiency vertices in sufficiently many matchings, and, in order to limit 
the maximum degree of the reject graphs R\ and R2, we must insure that 
no vertex v is not marked in much more than ^def(v) matchings. More 
precisely, we insist that 

max{0, —A - dB*(v)} < mAl(w) < min{Jdefr(v) + -6,defr(v)}     (5.6) 

for every v € B*, and, if \B*\ is even, we additionally require the technical 
condition 

mAl(&i)>CB (5.7) 

In order to define a marking that satisfies conditions 5.2 - 5.7, we find it 
useful to first assign targets t(v) to every v G B*, where t(v) is the number 
of matchings Mi, ...,MAJ which are going to miss v. 

2.1 If CB > cs, we define t(v) to be L^def^)] or [^defr(v)] for every 
v G B\, so that t(B%) = J2veB* *(

U
) = \^^r(B2)]- For eveiT v £ Bii 

we define t(v) so that max{0, ygA — dß*{v)} < t(v) < min{|(defr(v) + 
6),de£r{v)} and t{B{) = \\&eir{B{) - {cB - csf\ if |B*| is even, or 
t(B{) = \\deir{B{) + 6 - (cB - cs)~\ if |B*| is odd. 

If CB < cs (in which case \B*\ must be even), for every v G B%, 
we define t(v) so that max{0, ygA — dß*(v)} < t(v) < \^defr(v)] and 
i(^2) = r^defr(ß|) — (cs — CB)]', we additionally insist that t(b\) > CB- 

For every v G B^, we define t(v) to be L^def,.^)] or [^def(v)] and 

t(ß1*) = ridefr(ß1*)l- 
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Before we show that the described target assignment is feasible, we note 
that if we defined a marking such that m£l(v) — t(v) and mf1^) = defs(v) 
for all v E B*, then conditions 5.2, 5.3, 5.4, 5.6 and 5.7 would follow. 

To prove that the target assignments are feasible, we define W\ and Wi to 
be the sets of vertices v in B\ and B\, respectively, such that dei(v) > ^A, 
and we show: 

Claim 18 Suppose \B*\ is even and def(B*) > 2A or \B*\ is odd and 
def(B*) >IA. IfcB>cs, 

£ (1A - dB- (v)) < \defr{B{) - (CB - cs) (5.8) 

and, if cs > CB and CB < ygA — dß* {b\), 

Y, (^A - dB*(v)) < \defr{B*2) - (cs - cB) (5.9) 
vEW2 

and, if cs > CB and eg > ^A — C?B*(&I), 

J2    {^-dB*{v))<\defr{B*2)-cs (5.10) 
vew2-bi 

Proof: We first prove 5.8. Since ±de£(J3?) - (cB - cs) > %de£(B{) - cB, 
it is enough to show YlveWl{^A - d*B{v)) < |def(5f) - cB. 

If \B*\ is even then def(BJ) > f A and cB <'±A. It follows that \6eS.{B{) - 
CB > |A - IA > |A > EWBA - dB.(v)) if \Wi\ < 2. If 1^1 > 2, 
then the following holds:   §def(B?) - cB > ^A\Wi\ - \A > ^A|Wi| > 

If \B*\ is odd then def(BJ') > f A and cB < ±A. It follows that £def(B?) - 
cß > |A - ±A > |A > Zvew^ ~ dB*(v)) if \WX\ < 2. If 1^1 > 4," 
then the following holds: £def(£J) - cs > ^A|Wi| - 5A > ^A|Wi| > 
EueWi (HA - ^B* (v))- Finally, if T^i = {h, 62, &3>, inequality 5.8 is equiva- 
lent to J|A + CB < 5(^5* (&i) + d#* (^2) + rfß* (^3), which in turn is equivalent 
to ilA < ±§A. 



5.3.   CASE 3: 2A < DEF(B*) < A12/™ 91 

If cs > CB and Cß < jjjA — dß*(bi), implying that \B*\ is even, then 
def(B%) > A and deir(B%) > |A - x, where x = |(defs(5|) - def^*)) < 
y. It follows that idefr(S|) - (cs - cB) > §A - \x - ±A > ±A - |<5 > 
^A - dB. (6) and 5.9 is true if W2 < 1. If |W2| > 2 then |defr(^) - (cs - 
cB) > ^A\W2\ - ±A > ±A\W2\ > Zvew2(-mA ~ dB*(v)). 

Finally, if cs > CB and CB > jg A — dß* (b\), a similar argument shows 5.10. 

D 

Once the targets are assigned, we define in the following step the actual 
marking so that m^1 (v) = t(v) for every v E B* and 5.5 is satisfied: 

2.2 We set ms(v,i)  =  1 for every i = l,...,Ai and v € B* such that 
(a,ü)GM/. 

2.3 For every v £ B*, we pick a set Mv o£t(v) matchings among M[,..., M'^ 
missing v and we set m(v, i) = 1 for every M[ G Mv. We then equalize 
the marking using the equalizing procedure from 3.2.3. 

Note that, while the equalizing procedure may modify the matchings M{,..., 
M'Ai, they are still balanced in B{ and in B*2 and U^M/ = E(B\) UE(B% + 
s). Let n(Bl,i) and n(B2,i) be the numbers of vertices in B\ and B%, 
respectively, that are not marked in and are missed by M[. 

Claim 19 After step 2.3, the following hold for every 1 < i,j < Ai and 
Ar = 1,2/ 

(a) \n(B*k,i)-n(B*k,j)\<2 

(b) \n(Bli)-n(B*2,j)\<3 

(c) IS<n(B*k,i)<%6 

(d) m(JB*,«)<2A1/5 

Proof: (a) follows from n(Bl,i) = \Bk\ - {2\M^\ + m(Bk,i)) and because 
the matchings M^.-.^M^ are balanced in Bk and the marking is equal- 

ized over the matchings. (b) follows from (a) and because X)j=i n(-^i> ^) — 
Yli=i n(^2^)- We now prove that (c) holds for k = 1; a symmetric argu- 
ment does the job for k = 2. We observe that X^j=i n(-^i > *) = X^eB* (^i — 
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dB1(v)-mAl(v)) and also \dBi{v)-\dB*{v)\ < i<Jand|mAl(5J)-idef(SJ)| < 

|A. It follows that \8\B{\ - |A < X^ n(J 
follows from (a) and ±A < |B?| < 3A.      D 

Preparing the marking and the matchings for patching 

We now move some marks between matchings M[,..., M'A , and, in the pro- 
cess, we modify the initial matchings until every matching M[ misses the 
same number of unmarked big vertices in B\ and B^ • More precisely, we will 
obtain a marking that is proper over the modified matchings M[,..., M'Ai so 

that U^M/ = {E{B{) - E(Ri)) U {E(B* + s) - E(R2)) where: 

(i) mAl(v) = t(v) and mfl(v) = defs(v) for all v G B*. 

(ii) m(Bt,i),m(BZ,i) < 2A1/5 and S < n(Bl,i) = n(ß|,t) < 86 for every 
t = l,...,Ai. 

(iii) i?i and R2 are reject subgraphs of B\ and 5^, respectively, of maximum 
degree less than A9/10 and \E(RX)\ = \E(R2)\ < 2A. 

We define two partitions, (ll,I„) and (I%,I%), of J = {1,..., Ai} as follows: 
i € Jg if and only if m(S^,i) is even. For example, i £ 1% if and only if 
M? contains an odd number of marks on vertices in B%. In order to insure 
n(B*,i) = n(i?2)*) for all i = l,...,Ai, we must reorder the matchings 
M\,...,M\ and Mf,...,M^i so that m(5*,i) and m^,«) have the same 
parity if |5*| is even, and opposite parities if |B*| is odd. We can do the 
reordering only if \l\\ = |/|| when \B*\ is even or |Jg| = \I%\ when |J5*| is 
odd: we call this the parity condition. If the parity condition holds, we 
move directly to reordering the matchings in step 3.4. 

If, however, the parity condition does not hold, and either \B*\ is even and 
||ji| - |/e

2|| = 2d > 0 or \B*\ is odd and \\l\\ - \I%\\ = 2d > 0, we must move 
a few marks between some matchings: by switching, in 2d appropriately 
chosen matchings, the parity of the number of marks, we will insure the 
parity condition. We use one of the following procedures to move a mark on 
some vertex v from matching M' (that misses v) to another matching M: 

Simple mark move If M misses v, we just move the mark on v from M' 
to M. 

First edge rejecting mark move If there is an edge (u, u) G M, we re- 
ject (v,u), we move the mark on v from M' to M (figure 5.1). 
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r\r\     r\r\ 
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Figure 5.1: A simple mark move on v from M' (dashed) to M (full) 

r\r\     r\r\ 
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V—• x---» 
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before after 

Figure 5.2: A first edge recoloring mark move on v from M' (dashed) to M 
(full) 

First edge recoloring mark move If there is an edge (v,u) € M, u is 
missed by and not marked in M', we move the mark on v from M' to 
M, and we pick some edge (x,y) € M' and we reject it (figure 5.2). 

Second edge rejecting mark move If there is an edge (v, u) G M and 
there is an edge (u, w) E M', we reject (u,w), we switch (v,u) from 
M to M', and we move the mark on v from M to M'. 

We observe that in any of the mark moves, the matching M' (the mark 
"giver") remains of the same size, while M (the mark receiver) may lose 
an edge to the reject graphs. In order to limit the maximum degree of the 
reject graph, we must carefully choose our sequence of marks moves, which 
we do using: 

The careful procedure 

Let 2+ and /_ be disjoint sets of indices of matchings {M-f, ...jM^} 
such that either 
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r\r\     r\r\ 
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before after 

Figure 5.3: A second edge rejecting mark move on v from M' (dashed) to 
M (full) 

(i) |J_|>iAi + |i+|,or 

(ii)  |7_| > |7+| and m(v,j) = 0 for every j E 7_ if m(v,i) = 1 for 
some i E 1+ and v E B^ 

Recursively, for every i E I+, we pick some v E B\. such that m(v, i) = 
1, and we move the mark on v to some matching indexed by /_ chosen 
in one of the following four ways: 

1. If there exist j E I- such that m(v,j) = 0 and Mj misses v, we use 
a simple mark move on v from Mj to Mj. 

If we are not successful in 1, we set J* to be the subset of indices in 
J_ such that m(v, i) = 0. We observe that Mj hits v for every i E I* 
and | J*| > 17+1, which follows from our definitions of 7+ and 7_ and 
because mAl(v) < ^Ai for every v E B* (see 5.6). Then, we do one 
of the following: 

2. If 17* |  < 2A3//4, we pick any j E I* and we use the first edge 
rejecting mark move on v from Mj to Mj. 

3. If |7*| > 2A3/4 and there exists j E 7* such that (v,u) E Mj, u is 
missed by Mj and m(v, i) = 0, we use the first edge recoloring 
mark move on v from Mi to Mj, picking the edge (x, y) so no 
edge incident to either x or y has been rejected in the previous 
y/~K mark moves. 

4. If |7*| > 2A3/4 and we fail to find j as desired in step 3, we pick 
j E I* such that there is (v,u) E Mj and (u,w) E Mi and no 
edges incident to u or w have been rejected in the last ^A1'4 

edges mark moves, and we apply the second edge rejecting mark 
move. 
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We show that we can choose j in step 4 as desired. At least 2A3/4 

matchings indexed by 7* hit v and because the multiplicity of any edge 
is at most VA~, there are at least 2A* different vertices u such that 
(v,u) G Mj for some j £ I*. At most 2A1/5 such vertices are marked 
in Mi so there are more than 2A1/4 — 2A1/5 > A1/4 vertices u such 
that (v, u) G Mj for some j G 7* and (it, w) € Mj for some vertex w. 
Finally, since no more than A1/4 edges in Mi have an endpoint incident 
to an edge rejected in the previous 5A1/4 iterations, there exists j G 7* 
as desired in step 4. We observe that the procedure insures that no 
vertex is incident to more than 2A3/4 + j^m < 4A3/4. 

We now describe how we use the careful procedure to insure the parity 
conditions. If |J5*| is odd, note that either ^l + ^l = Ai+2dor |/e| + |/f | = 
Ai + 2d. In the first case we set 7j. = J1. and 7+ = 72, while in the second 
case we set l]_ = 71 and 72 = 7|. If |J5*| is even, either |/*| + |72| = Ai + 2d 
or |7g I + |72| = Ai + 2d. In the first case we set l\ = l\ and l\ — 72, while 
in the second case we set l\ = l\ and 72 = 72. Whether \B*\ is odd or 
even, we define D\ = \l\\ — ^Ai and D2 = \I+\ — 5A1. Note that while 
one of Di or D2 may be negative, their sum is always equal to 2d. We first 
attempt to move the marks as follows: 

3.1 Let 7* to be the larger one of l\_ and 72, and Il
+ to be the smaller one 

of the two. We set 7^ to be a subset of 7+ of size d! = min{d, [^Z>i]} 
such that mr(B%.,i) > 0 (note subscript) for every i G 7^ and we move 
d' real marks from 7^ to 7+ — 7^ using the careful procedure. (Note 
that |7* - J*| > iAi + |7*|.) We then set 7^ to be a subset of Il

+ of 
size d — d! (either 0 or equal to \_\D2\ > 1) such that mr(Bf,i) > 0 for 
every i G 7', and we move d — d! real marks from l{ to P+ — 7' using 
the careful procedure. (Note that \Il

+ — 7'| > ^Ai + |/'|). 

This sequence of mark moves fails if there are less than d' indices i in 7* such 
that m(B£,i) > 0, or if there are less than d — d' indices i in l[ such that 
m(Bf,i) > 0. In the first case, l\ = 7^, m(75|, i) = 1 for every i G 1% so that 
mAl(S*) < iAx. Since mA'(B*) > f A - ±6 and mAl(B$) -S< mAl(B2*) 
(follow from our terget assignments), it follows that k = 1. In the second 
case, a symmetric argument also gives / = 1. So, if we fail in step 3.1, we 
do one of 3.2 or 3.3 instead, as described below. 

3.2 If \B* I is odd, we first set 71 to be the subset of 71 of all indices such that 
m(Bl,i) — 2, and we move |7*| (real) marks from 71 to l\ — 7^ (note 
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that |7g - l}\ > 2^! + 1-^*1)- After tkk sequence of mark moves, we 
obtain the modified partition (7*, 7*) that satisfies |7*| = mAl(B^) < 
5A1 so that rn(B*,i) = 1 for every i E l\ and m{B\,%) = 0 for every 
« G 7*. We remark also that m(#|, i) = 1 for every i E 72, because the 
marking is equalized over Mj2,..., M2^ and mAl (5|) < mAl (-Bj") + £ A. 
It also follows that there are at least d — |7*| indices i in 72 such that 
m(7?2,2) = 0. Since we defined a marking that satisfies mAl (7?*) > Ai 
(easy exercise), there must be at least ^(Ai — |7*| — |72|) = d — |7*| 
indices i in 7| such that m(7?2,i) = 2. So, we set 72 to be a subset of 
Ig of size d - \ll\ such that m(Bl,i) = 2 for every i E 72, we set il to 
be the subset of 7| of d - |7*| indices i such that m(#2, i) = 0 and we 
move d — |7j| real marks from 72 to 7?.. 

3.3 If |7?*| is even, we first set 7* to be the subset of l\ of indices i such that 
m{B\,i) = 2 and we move d\ = |7*| (real) marks from 7* to l\ — I}. 
After this sequence of mark moves, we obtain a modified partition 
{I\,ll) that satisfies |7*| = mAl(51*) < \&x, so that m{B{,i) = 1 for 
every i E 7„ and m(Bl,i) = 0 for every i E l\. Note that m(ß|,i) = 
1 for every i £ 1%, because the marking is equalized over 7?| and 
mAl(B5) = mAl(51*) + 2cB < mAl(51*) + |A. It also follows that 
mAl(B?>) = \I%\ + 2cB = |72| + 2(CB - (d - di)), so that at most 
CB — (d — d\) indices i in 72 satisfy m(B%,i) > 0 (= 2, actually). 
Since mAl(b) > CB (from 5.7), it follows that there are at least d — d\ 
indices i in 72 such that m(b,i) = 1. (Recall that b is the largest 
deficiency vertex in 7?2.) Let d2 be the number of indices in 72 such 
that mr(T?| — b, i) = 1. Depending on the value of d2, we do one of 
the following: 

3.3.1 If d2 > d — di, we set 7* to be the subset of 1% of size d — d\ such 
that mr(7?2 —b,i) = l for every i £ I*, we set il to be a subset 
of 72 of size d — d\ such that m(b,j) = 1 for every j E 72 and we 
move d — d\ real marks from 72 to 72 (note that \l\\ = |7l| and 
that m(T?2* - 6,j) = 0 for every j Ell). 

3.3.2 If c?2 < d — d\, we set 72 to be the subset of 72 of size d2 such 
that mr(B2 — b, i) = 1 for every i E 1%, and we move e?2 real marks 
from 7,2 to I§ - Il (note that |72 - 72| > |72| and m(B% - 6, j) = 0 
for every j E 72 — 72). When done, we reset 72 to be the subset 
of 72 of size d — d\ — d2 such that m(7?2 - b,i) = 2 for every 
% E 72. Note that there must be that many such indices because 
otherwise ^A] + VÄ > mAl(6) > mAl(£* - 6) > L5AJ - VÄ, 
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a contradiction. We move d — d\ — d2 marks from I2 to J2 (note 
that |/2| > |I2| and that m{B% - b,j) = 0 for every j G J2). 
When done, there will be exactly d — d\ — d2 indices i in 72 with 
mr(jB| — b,i) = 1. Finally, we set J2 to be the subset of these 
indices and we move d — d\ — d2 real marks from I2 to 72 — J2 

(note that |72 - 72| > |J2| and that m(E| — bj) = 0 for every 

j e l2o - ID 

When done, the parity conditions are satisfied. In steps 3.1, 3.2 or 3.3, we 
move at most 2d < Ai marks and we use the careful procedure at most three 
times. So the total number of rejected edges on each side of the bipartition is 
at most Ai but no more than 12A3/4 < 5A4/5 (for large A) is incident to any 
particular vertex. A closer analysis reveals that no matching has increased 
in size, no matching has decreased by more than 1 (due to edge rejection), 
and no matching has lost or gained more than one mark. So, using claim 
(b) of 19, we have that \n(B^,i) — n(B£,j)\ < 6. It now remains to satisfy 
n{B\,i) = n(B£,i) for all i = 1,..., Ai: 

3.4 We reorder the indices of matchings M\, ...,M\ so that m(Bl,i) and 
m(B%,i) have the same parity if \B*\ is even or different parities if 
\B*\ is odd. We then set M[ = M} U M? for every i = 1,..., Ai. Note 
that after reordering the matchings, \n(B$,i) — n(B2,i)\ is even and 
at most 6 for every i = 1,..., Ai. 

For every i = l,...,Ai, we delete d = \\n(Bl,i) — n(I?2?*)l < 3 edges 
in E(B{) if n{B{,%) < n{B^,i) or in E(B%) if n(SJ,t) > n(B%,i). 
In each iteration, we pick d edges whose endpoints have not had an 
incident edge rejected in the previous \/Ä iterations. 

Since there can be at most Ai iterations in step 3.4, no vertex is incident 
to more than y/~K rejected edges. Since mAl(Bl) — m^fö^) = 2cg if \B*\ 
is even or 2cB - Ai if \B*\ is odd, it follows that \E(Ri)\ = \E(R2)\ < 2A 
and that the maximum degree of R\ and R% is at most A4/5. Finally, 
6 < n(Bl,i) = n{Bl,i) < 86 follows from claim 19. 

The patching 

For i = 1,..., Ai, we recursively obtain Mj by augmenting the vertex disjoint 
patches we construct between pairs of unmarked big vertices missed by M/ 
in F = G* — R\ — R2 — Mi — ... — Mi-\. After each augmentation, we add 
the edges of M[ left uncolored by this augmentation to the reject graphs R\ 
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or i?2 • If we fail to construct a patch between two unmarked vertices missed 
by some M[, we will show the existence of and construct a fail pair (X, Y) 
in (£?i, B2). On the other hand, if we are successfull, the big edges of every 
matching Mi will miss only the vertices v marked in it (i.e. all v such that 
m(v,i) = 1), and F = G* — U^Mj is a reduction as desired. 

We now describe the construction of the vertex disjoint patches of M[ in 
F = G* — R\ - R2 - Mi — ... - Mi-\. We recall that a patch P between 
unmarked vertices x £ B* and y £ B\ missed by M[ is a path from x to 
y with edges alternating between E(F) f~l E{B{,B2[) and M[ n E(B). For 
r = 1, ...,n(B*,i), we recursively construct the patch Pr as follows: 

4.1 We pick a pair of unmarked vertices xr and yr on opposite sides of the 
bipartition so that xr and yr are missed by M[ and have not yet been 
patched. We pick yr so it belongs to B. In choosing xr we always give 
priority to unmarked, missed vertices in B* — B. 

Since \B* - B\ < 2A1/5 < n(B*,i), there are more than \B* - B\ vertices 
in B that are not marked and are missed by M[ - our choice of the patch 
endpoints xr and yr is thus feasible. 

4.2 We define unavailable and usable vertices.    We call v  £ B un- 
available if it is an internal vertex of any patch P\,...,Pr-i or of 
any patch constructed for one of the previous 8 [A1/10] matchings 
(Mj_i,...,Mj_8rAi/io-|). We note that if a vertex is not unavailable, 
then no edge incident to it has been rejected while obtaining one of 
the previous 8 [A1/10] matchings. We call v € B usable if v = yr or 
(v,u) € M[ and neither v nor u is unavailable. If xr G B* — B, we 
also define y°-unavailable and Y°-usable vertices. We call v £ B 
y°-unavailable if it is an internal vertex of any patch Pi, ...Pr_i, or 
if it is an endpoint of the second edge of a patch out of a vertex in 
B* — B constructed for one of the previous 8 [A1/10] matchings. We 
call v E B is Y°-usable if v — yr or (v, u) £ M[ and neither u nor v 
are y°-unavailable. 

4.3 We recursively build the sets X1 and Yl for 0 < I < 6 [A1/20] as follows: 

X° = {xr}, 
if xr £ B* - B, Y° = {v £ B : v is y°-usable and (xr,v) £ E(F) D 
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iixr G B, Y° = {v G B : v is usable and (xr,v) G E(f )n^(5J,B^)}, 

X1 = {veB :3ue Y1-1 such that (u,t>) G M/} 

7! = {u G 5 : u is usable and 3M G X1 such that (u, v) G .E(.F) fl 
E(BUB2)}. 

If xr G 5* - 5, then at most 6\Al/20]8A1^10 vertices in B belong to 
Pi,..., Pr-i and, as such, are Y°-unavailable. Furthermore, at most 8[A1/10] 
\B* — B\ < 8[A1/10]2A1''5 vertices are endpoints of the second edge of a 
patch out of a vertex in B* — B constructed for one of the previous 8 [A1/10] 
matchings, and as such, are y°-unavailable. So, at most A2'5 vertices are 
not Y°-usable. 

4.4 If yr G yJ for some 0 < j < 6[A1/20], we construct the patch defined 
by the sequence of vertices a;r, y

0,^:1, y1, ...,yJ_1,a;-7, yr where xl G X1, 
yl G Yl, (xr,y°), {x^,yr) and {x\yl) belong to E(F)nE(Bl,B%) and 
\y\xl+l) eM[. 

Note that each patch contains the same number of edges from E{Bi) and 
from E{B2); so when done, |£(.Ri)| = \E(R2)\ < 24A16A1/20 < ^A19/10. 
Furthermore, no vertex is incident to more than /^10 < |A9//10 edges 
rejected in this step. 

4.5 If there is no YJ containing yr, then we pick the smallest j > 1 such 
that \Y'\ < \X'\ + ±A19/20. ItXJ C Bl then the pair (X,Y), defined 
by X = {v G X* n B : d£2(w) > ±A - A9/10} and Y = NF(X) n B, 
form a fail pair. 

I£F = G*-Mi- ... - Mi-t, then d£.(w) = A - Ax - (def(u) - mA^(v)) > 
^A - A9/10.  Since A(i?i) and A(R2) are less than A9/10, it follows that 
d£2(v) > tgA - |A19/20 for every u G Bf, and similarly, ^(u) > ^A - 
iAi9/20 for every v e B* 

Claim 20 (X, Y) forms a fail pair in (B!,B2). 

Proof: To simplify notation, let x = xr G B*, so that y = yr G B2. Let us 
first set an upper bound on the sizes of Fi and F2, the unavailable vertices 
in B! and B2, respectively. Since a patch contains at most 6[A1/20] vertices 
in B\, and since there are at most 86 patches per matching, it follows that 
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\FX\ < sLA^iOja^rA1/20] < JA
19

/
20 

8 

for large enough A. A symmetrical argument gives |i<2| < |A19'20. 

If x e B*-B, there are at most A2/5 y°-unavailable vertices. Since dB2 (x) > 

j^A - |A19/20 and because the edge multiplicity is at most \/A, NB2(x) > 

^v/Ä and \Xl\ = \Y°\ > N%2(x) - A2/5 > 0. So, there must exist a vertex 

v e X\ which implies that \X2\ = |yx| > dF
Bi{v) - \FX\ > ^A - |A19/20. 

If x e B then \X2\ = \Y1\>±A- I A19/20 easily holds. 

Suppose that \Yl\ > \Xl\ + \A19/20 for all 2 < Z < {6 A1/20] - 2. Then, 

|X6l"Al/2°l-2| > 3A > |ßi|, a contradiction. 

So we must have \Y*\ < \Xi\ + ±A19/20 for some ;' between 1 and [6A1/20] -2, 
and we pick the minimum j satisfying this property. Let E\ and E2 be 
subsets of B\ and £?2, respectively, missed by M[. Clearly, \Ek\ < n(Bk, i) + 
m(B*k,i) < 86 + 2 < 106. If j is even (and X* C £1 and Y* C B2), we 
define Y = Y* U E2 U F2; if j is odd (and X* C B2 and yj C Si), we define 
Y = YJUElUF1. Let I = {»eP: d£(v) > \A - A19/20}. (A-, y) forms 
a fail pair by the following three properties: 

i. |y|<|x| + A19/20. 
Proof: We assume X C B± and Y C B2; a symmetric argument proves 
the statement when X <Z B2 and y C -Bi- We note that \Y\ < \Y^\ + 
\E2\ + \F2\ < |J^'| + ±A19/20 + 10<5+iA19/20 < |X^| + §A19/20. Finally, 
we argue that \X'\ < |X| + |A19/12 by showing that X'-X C L where 
L = vt + {v GB : dei(v) > 2\/Ä} and \L\ < y/£): if v G Bx - L then 
dF

B2{v) > dF»(v) - A3/5 > A(F) -2VÄ- A3/5 > \A - |A19/20, 
implying v 0 X3' — X. 

11. 

111. 

For all veX: dY{v) > ±A - A19/20. 
Proof: Assuming X C Bu dY(v) > dY(v) = dF

B2{v) > \A - |A19/20 

by the definition of X. A symmetric argument applies if X C B2. 

If X C Bk then |Bfc| - \X\ >\A- A19/20. 
Proof: I£ X C Bi then y must belong to B2 - NF(Xj) which implies 
that d%(y) = 0.   Since y E B2 then dF

Bi{y) > \A - |A19/20.   It 
follows that |5i - X\ > |A - ±A19/20. If X C B2, we first note that 
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\N^(y)\ > \A - |A19/20 (since y e B2). Let Z be the subset of 
Nß2(y) of vertices incident to some edge of M[ fl E(B1). It is easy to 
check that Nß2(y) — Z contains only vertices that are missed by M/, 
that belong to B* — B or that are forbidden. Since there is fewer than 
m(B(, i) + n(B{, i) + \FX \ + \B* -B\< A19/20 such vertices, Z must be 
non-empty. Let (u,v) be an edge of M[ in E{B\) with v € Z. Since 
dß2(u) > jA — |A19/20 and d^(u) = 0 (because otherwise a patch t y 
through a vertex in X and vertices u and v would have been possible), 
\B2 - X\ > \A - |A19/20. 

D 

5.3.2    The reject coloring pass 

Once we complete the first pass and delete the matchings M\,..., MAJ from 
G*, we obtain the reduction F = G* - U^Mj = Ri + Hi + R2 where 
Hi C E(B{ U S{,B2 U S%) and #i and R2 are reject graphs in B\ and 
£?2, respectively, of maximum deggree less than A9/10 such that E[R\)\ = 
|^(^)| < |A19/10. In addition, we know that 

dß* («) > ^A - <5 for all v £ B* (5.11) 

from 5.1 and there is "plenty" of deficiency remaining in B\ (5.2) 

def(Bl)-mAl(i?r)>^A-^ (5.12) 

In the reject coloring pass, we will attempt to construct the disjoint match- 
ings MAJ+I, ..., MAJ+A2 in -F1 sucn that K = F — U^MAJ+J is a reduction 
of JP, and thus of G*. 

The initial coloring 

We first construct an initial coloring: 

1. We construct initial matchings M[, ...,M[      balanced in B± and in B\ 
2      2 

and covering Ri U R2 using Fournier's edge coloring algorithm and our 
balancing procedure (see 3.2.2). 
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Since A2 > ±A19/20 and |-E(i?i)| = \E(R2)\ < |A19/20, it follows that 
\M!nE(Bt)\ = \M<nE(BZ)\ < ^A19/20]. 

The marking 

We split each M[ into M"^iJr2i_x and M'£ +2i and obtain disjoint matchings 
M^ +1, ...,M^ +A covering E(Ri)UE(R2) and to define a proper marking 
over those matchings such that, for every i = 1,..., A2: 

(i) \M£i+inE(Bl)\ = \M'ii+inE(Bt)\ < r|A19/20l, 

(ii) m(B{, Ai + i) = 1 and m{B*,Ai + i = 0 for all i = 1,..., A2, 

(iii) n(J5i, Ai + i) = n{B{, Ai +1) = n(52*, Ai + %) = n(B2, A1 + i). 

The last condition implies that in no matching M£ +i a vertex v in B* — B 
is missed and not marked. So, we will only need to patch vertices in B in 
the patching step. 

Let us denote Y?j=i mu(v, Ai + j) by m^1+l(v) for i — 1,..., A2, v G B* and 
« = r or u = s. We define the marking and we construct the matchings by 
repeating the following for « = 1,2,..., \ A2: 

2.1 We set mu(v, Ai+2i—1) = 1 for some v £ B% such that deiu(v) > mu(v) 
where u = r or u = s. Then, we set mu>(v', Ai + 2i) = 1 for some 
«' € .BJ such that defu'(u') > m^,1+2l~1(v') where u' — r or u = s and 
{v,v')^M[.  . 

We can choose v and v' as desired because 5.2 implies that at least 3 vertices 
have some remaining deficiency. 

2.2.1 We remove from M[ the edge incident to v, if any, and we add it to 
M'£ +2i- Note that this edge is not incident to v'. If v' is hit by M[, 
let v" be the vertex v' is matched with. 

2.2.2 We now construct M^_i from M\ so that no vertex in B* —B is missed 
and unmarked. Let U be the set of unmarked vertices in B*—B missed 
by M\. We construct a matching M in (F - v - v' - v") D (5*, i^) - 
M^ +1 — ... — M'^ +2i_2 such that every v G C7 is an endpoint of some 
edge in M. (We esily obtain this matching because the neighborhood 
of every v G B* — B is at least j^VÄ > \B* — B\.) We remove from 
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M[ edges incident to M and we add them to MA +2i. We remove 
additional edges not incident to vertices in W2 from M^DBl or M^DB2 

and we add them to MAi+2i so |M£l+2in.BJ| = |MAi+2inB}\ < A1/5. 
We then set M^i+2-_1 =M[UM. 

2.2.3 We now finish the construction of M^i+2i, again so that no vertex 
in B* — B is missed and unmarked. Let U be the set of unmarked 
vertices in B* — B missed by M'^i+2i. Let X be the set of big vertices 
that are endpoints of edges in M'^i+2i. We construct a matching M 
in (F-v' - v" -X)n (Bl,B*) - M£1+1 - ... - M£1+2i_i such that 
every v € U is an endpoint of some edge in M. We add M to the final 

M'i1+2i- 

The patching 

We now attempt to construct the matchings M^+i, ...,MA1+A2- F°r * — 
1,..., A2, we obtain M^+i by augmenting MAi+i in H = F — MAX+I — ... — 
MAX+I-I with a disjoint matching hitting all unmarked vertices in B missed 
by M'^i+i as follows: 

3. Let U\ and U2 be the sets of unmarked vertices missed by MA +i in B\ 
and 52, respectively. We attempt to find a perfect matching M in the 
bipartite subgraph defined by the bipartition (C7"i, C/2) and with edge 
setE{H)nE{Ui,U2). 

If we successfully obtain such a matching M, we add its edges to MA +i 

to obtain MAX+I- 

If we fail to obtain M, we find the sets X' C Ui and Y' = N§2{X') 
such that \X'\ > \Y'\ and we set X" = U2-Y' and Y" = Ux -X' = 
N% {X"). Let Y = B2-X" and X = {v E X': d% (v) > ±A-A19/20}. 

Claim 21 (X, Y) forms a fail pair in (B\,B2). 

Proof:    The claim is true if the following three properties hold: 

|y|<|x| + A19/20. 
Proof: |F| < \Y'\ + 2|MAi+J + m{B2, Ax + t) < \X'\ + ^A9/10 + 2 < 
\X\ + A9/10. The last inequality follows from X' - X C L where 
L = {v E B : def(u) > 2\/Ä} is of cardinality 2\/Ä: since if v E B\ -L 
then d%2(v) > dF

B2{v) - i > 1A - 3A9/10 - ^A19/20 < IA - A19/20, 
and if v E B2 - L, d^ (t>) > ± A - A19/20. 
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For all v in X: dY{v) > |A - A19/20. 
Proof: dy(v) > d${v) = d^{v) > ±A - A19/20 by definition of X. 

1^-X^iA-A19/20. 
Proof: Since \X"\ > \Y"\, X" is not empty. If v £ X" then d%(v) 
= 0. It follows that \Bi -X\> dfx («) > dg. («) - A3/5 > |A - 
^19/20 

D 



Chapter 6 

The smallest deficiency case 

In this chapter we present an algorithm that attempts to color with A colors 
the edges of a multi-Vizing reduction G* = (B* US*,E*) of a Vizing graph 
G = (B\JS,E) such that def(£*) < §A. We assume that A is large, 
|S*US'*| < 6A, that no trivial subgraph of G* is overfull and that a modified 
split partition (Bf U S$, B\ U S2) of B* U S* is given. In case our algorithm 
fails we will show the existence of and construct a fail pair (X, Y) in (Bi,B2) 
(where BY = B n B\ and B2 = B n B%). 

6.1    Bipartite vs. near-bipartite reductions 

In the smallest deficiency case, we once again want to construct about JjA 
reducing matchings whose removal leaves a reduction H that is A(H) col- 
orable. One complication is that we can no longer insist that H is bipar- 
tite. We illustrate this with the following example. Suppose \B\ is even, 
\B* -B\ = \S*\ = 0, def(B) = A, def(&i) = §A - 2, def(62) = def(63) = 
\A + 1 where 61,63 e B2 and b2 € Bx. Then cB = \E{B{)\ - \E{B2)\ = 
|(def(52)-def(Si)) = |A-1. If Mi, ...,Mk, for k = ^A+o(A), were match- 
ings whose removal leaves a bipartite reduction H = G — M\ —... — MAJ+A2 

in (i?i,J32), then both 6 and 6" must be missed simultaneously by exactly 
CB of these matchings. On the other hand, all d,B2(b") = §A + o(A) edges 
incident to 6" must also be covered by the union of the matchings. We would 
thus require k > Cß+dB2(6") > |A + o(A), a contradiction. We thus cannot 
obtain a bipartite reduction with so few matchings. 

105 
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Our new approach to coloring G* is to construct disjoint matchings Mi,..., Mt 
whose removal leaves either a bipartite reduction or a near-bipartite re- 
duction N of G* with no overfull subgraph of degree A(N). We then 
color the edges of N with A(iV) = A - k colors by applying the edge- 
coloring algorithm for near-bipartite graphs of Reed[??], and we assign the 
remaining k colors to the disjoint matchings Mi,...,Mfc. In this case, we 
set k = Ai + A2 where Ai is the smallest even (odd) integer greater than 
or equal to \A + A3/4 In A if A is even (odd) and A2 is the smallest even 
integer greater than or equal to |A19'20. 

Let vi be the smallest deficiency vertex in B\ and v2 be the smallest de- 
ficiency vertex in B2. The near-bipartite reduction N should satisfy the 
following properties: 

A. E(N) = H + K where H is a bipartite graph with edges in E(Bl U 
S{, B\ U S2) and either K is a set of edges in E{B\) incident to v\ or 
if is a set of edges in E(B2) incident to v2, 

B. N does not contain a trivial overfull subgraph, i.e. B*, B* — v for any 
v E B* or B* + u for any u G S* do not induce an overfull subgraph 
in AT, 

C. N = (B* U S*,E(N)) is weakly Vizing, i.e. d%.{v) > ^A(N) for all 
v G B*, d%. (v) < |A(iV) for all v e S* and d%. (v)+d%t_v(u) > A(N) 
for all u,v € B*, . 

Lemma 23 (near-trivial) Let G* = (B* U S*,E*) be a multi-Vizing re- 
duction with a modified split partition (B\ U S^B^ U S^), and let N be a 
subgraph of G* that satisfies the properties A, B and C. If N contains an 
overfull subgraph of maximum degree A(iV) then (Bi,B2) contains a fail 
pair (X, Y). 

Recall that a fail pair (X, Y) in (Bi,B2) is a pair of sets such that either: 

X C Bi, \Bi -X\>^A- A19/20 and Y C B2 

or 

X C B2, \B2 - X\ > ^A - A19/20 and Y C Bx 1 ' '      4 
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and, in either case, |y| < \X\ + A19/20 and dY(v) > |A - A19/20 for every 
v £ X. If (B\, B2) contains a fail pair, we can construct a forbidden subgraph 
in G* (see 2.5.2). So, by the near-trivial lemma, our task of A edge coloring 
G* is reduced to the construction of disjoint matchings whose removal from 
G* leaves a reduction N with the properties A, B and C. We accomplish this 
in two coloring passes which we describe in the remaining of this chapter. 

Proof: (of near-trivial lemma 23) Let N = H + K such that E{H) C 
E(B* U 5*, B\ U S2) and let us assume that K is a subset of edges in E(B\) 
incident to v\ - the proof when if is a subset of edges in E(B2) incident 
to v2 is symmetric. Let F be the non-trivial subgraph of N of maximum 
degre A(iV) (we will slightly abuse our notation by using F to denote the 
set of vertices of F too). Note that v\ must belong to F, since otherwise F 
is bipartite. 

We first remark that the set R = {v € F : dF{v) < A (TV) - y/A(N)} 
is smaller than y/A(N). Thus any vertex v in the graph H* induced by 
(F - R) n (B - fe1) has minimum degree greater than A{N) - 2^A(N) - 
dB*-B{v) - mult(61,t;) > A(N) - 2A3/5 > \A - A19/20. We also note that 
H* is bipartite. 

Let X = H*HBi and Y = H*nB2 and let us assume that \Y\ > -|X|+A19/20. 
Then: 

\E(X,Y)\    >    |y|(A(A0-2A3A5) 
> (|X| + A19/20)(A(iV)-2A3/5) 

> \X\A(N)>\E(X,Y)\ 

for A = A(N) + Ai + A2 large enough. This contradiction and one obtained 
with a similar argument by assuming that \X\ > \Y\ + A19/20 implies that 
||X| - |y|| < A19/20. 'So, if one of |Si - X\ or \B2 - Y\ is greater than 
\A — A19/20, then (X, Y) is a fail pair in {B\, B2). In the remainder of this 
proof, we show that N must contain a trivial overfull subgraph of maximum 
degree A(N), given the assumption that both \B\ — X\ or \B2 — Y\ are no 
greater than \A - A19/20. 

Consider the set C = {v € B - F : d$(v) > y/A{N)}. Since F is overfull, 
\C\ < y/A(N). Suppose there exists a vertex v in B — F — C: v must have 
at least ^A(N) - A3/5 > \A — |A19/20 neighbors in B, and consequently at 
least \A — iA19/20 neighbors in B — F. Since v ^ v\ and mult(«i, v) < 1, all 
the neigbors of v in B but at most one (vi) must be accross the bipartition 
from v. It follows then that \BX -X\> \BX -F\>\A- ^A19/20 if X C Bx 
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or |^2 — X\ > |A — |A19/20 if X C i?2) contradicting our assumption. So, 
B - F — C must be empty and \B — F\ < |_-\/A(JV)J. Suppose now that 
\B-F\>2 and that u,v,w E B - F. Then, A(N) > \E(F,B - F)\ > 
d$(v) + d${u) + d$(w) > |A-3A19/20 > A(N), a contradiction. So, there 
cannot be three vertices in B — F and \B — F\ < 2. We similarly prove 
\B* -F\<2. 

If B* - F = {u,v}, then \E(F + u + v)\ = \E(F)\ + d%.(u) + d%._u(v) > 
±A{N)(\F\ - 1) + A(N) = ^A(N)(\F + u + v\ - 1). So, F + u + v is an 
overfull subgraph of G* as well. So, in any case, there exists an overfull 
subgraph F' of maximum degree A(N) such that \B* — F'\ < 1. 

Suppose now that \F' f)S*\ > 2, and let u and v be two vertices of F' D S*. 
Then |£(F')| = |S(F' - u - v)\ + d£(«) + d^(«) < ^A(JV)(|F'| - 2) - 
{d$(u) + d%(v)) + (d%(u) + d$(v)) = ±A{N)(\F'\-2) contradicting the fact 
that F' is overfull. So, \F' n 5*| < 1. 

Finally, we show that if \B* - F'\ = 1 and \S* f) F'\ = 1, then B* itself 
must be overfull. This would prove our claim that G* must contain a trivial 
overfull subgraph. Suppose that F' = B*—v+u for some v £ B* and u € S*. 
Then \E(F')\ = \E(F'-u)\ + d$(u) < \E(B*)\-d%.(v) + d%.(u) < \E{B*)\ 
since d%.(v) >d%*{u). Since \E(F')\ > ±A(N)(\F'\-1) = ±A(N)(\B*\-1), 
B* must be overfull. 

D 

6.2    The first coloring pass 

In the first pass, we attempt to construct the matchings Mi,...,M^ con- 
taining most edges in JB(JBJUS'J) and E(B%US%) such that F = G*-U^}lMi 

is a reduction of G*. As in the previous, higher deficiency, cases, we obtain 
these matchings by patching the unmarked big vertices missed by a set of 
initial matchings. Our patching technique is essentially the same as in the 
small deficiency case; so, we focus our attention to the marking. The issues 
that drive our marking choices include the same ones as in the previous 
cases. If \B*\ is odd (even), an odd (even) number of big vertices must be 
missed by the big edges of every matching. Also, the patching step requires 
that we keep the degree of every vertex high, so we must insist that every 
vertex with large deficiency is missed by many matchings. In the smallest 
deficiency case, the marking must satisfy a few additional conditions if the 
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final near-bipartite reduction is to satisfy the properties A, B and C. To 
make matters more complicated, we must be very precise how we define the 
marking, because very little deficiency is available. For this purpose, we 
find it useful to first assign targets to every v G B*, i.e. the number of 
matchings among M\, ...,MA1 whose big edges miss v. Because of the dif- 
ferent "types" of deficiency we specify different types of targets. We denote 
by tr(v) the number of matchings missing v and by tSl(v), tS2(v) and tS3(v), 
the number of matchings containing the edge (si,v), (s2,v) and (s2,v). We 
also use t(v) to denote tr(v) + Ylues* *u(w)- 

We find it convenient to describe the target assignments separately for the 
cases when \B*\ is odd or even. Once we have a satisfactory target asssign- 
ment, we define a marking that is proper over an intial set of Ai matchings 
such that m^u) = J2iJim(v^) = tu(v) for every v G B*, u = r and 
ueS*. 

6.2.1    The targets for odd \B*\ 

The target conditions 

If \B*\ is odd, the big edges of every matching Mi,..., MAX must miss an odd 
number of big vertices. In addition, we insist that every edge in E(B*,S\) 
and in E(B2,S2) 

must belong to some matching. The target assignments 
must then satisfy 

t(B*) = £ t(v) > A! (6.1) 
v€B* 

and 

tSl (B*2) = defSl(B*2), tS2(B$) = defS2(ßj) and tS3(B*2) = defS3(B*2)    (6.2) 

We make sure that B* does not induce an overfull subgraph in F with 

def(fl*) - t(B*) > A - Ai (6.3) 

In (7*, by the properties of a modified split partition, there are c# more 
edges in B* than in B2 (where \A < CB < |A). Suppose fei is the integer 
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defined by t(B{) — t(5|) = Ai - 2(CB - h). Then, k\ more big edges in 
J3* than in B\ will not be covered by U^Mj. Since a subset of these edges 
eventually forms K, the edges of the final near-bipartite reduction N whose 
removal from N leaves a bipartite graph, we must choose these k\ edges to 
be incident to v\ and we insist that 

11 1 
t(B\)-t{B*2) = AI-2(CB-AI) for max{0, -A- -cs -20} <h<-A + S 

o 2 4 
(6.4) 

Recall that cs = ^(d(S2) - d(Si)) < ^d(si). The curious lower bound on 
k\ is a technical condition that we will use in the reject coloring pass. If 
our target assignments are such that k\ = 0 in 6.4, we will construct a 
bipartite reduction H of G* in the two coloring passes. If, however, our 
target assignments are such that k\ > 0 then we may construct a near- 
bipartite reduction instead. In that case, for technical reasons that help 
simplify our analysis and to ultimately satisfy property C, we require that 
big vertices stay big and small vertices stay small. More precisely, we require 
that d%,(v) > i(A - Ai) for every v e B* and d£.(u) < 5(A - Ax) for 
every u E S*. We will obtain this if the target assignments satisfy 

de£(v) - t(v) < 1(A - Ai) for v S B* (6.5) 

defu(iT) - tu(B*) < i(A - Ax) for u € S* (6.6) 

and def(v) - t{v) + def(«) - t(u) + nF{u,v) < A - Ai for all u,v 6 B*, 
where ßF(u,v) is the multiplicity of edge (u, v) in F. In almost all cases, 
our target assignments will satisfy the stronger condition 

def(u) - t{v) + def(u) - t(u) + /j(u, v) < A - Ax for u,v £ B*       (6.7) 

where ß(u,v) is the multiplicity of edge (u, v) in G*. In some cases, when 
all the deficiency is concentrated in only two vertices v = 61 and u = 62? 
we are not be able to insure 6.7 for the pair &i,&2- In this special case, 
t(B* — bi - 62) = de£(B* — b\— 62) and ^(bi,b2) = 1, and we will insist that 
one of Mi, ...,MA1 contains (61,62) (which we take care of in the marking 
step). 
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Finally, we require a number of technical conditions to be satisfied by the tar- 
gets to help us define the marking and construct the matchings Mi,...,MAJ • 
First, we find it useful to limit the number of marks to 3 per matching, and 
we thus require 

t(B*) < 3Ai (6.8) 

and also 

2(t(u) + t(v)) < Ai + t(B*) for u,v E B* (6.9) 

2(tu{B*) + tv{B*)) < Ai + t(B*) for u,v E S* (6.10) 

2(t{v) + tu(B* - v)) < Ai + t(B*) for vEB*,uES* (6.11) 

We also insist that most vertices v are not marked much more than ^def(u) + 
^5 times. 

£ (t(v) - (ideffo) + \S)) < 6 (6.12) 
veB* 

The target assignments 

Initially, let tr(v) = 0 and tu(v) = 0 for every v E B* and u E S*. In the 
following three steps, we define an initial target assignment that satisfies 
most of the target conditions: 

1.1 For every (u,v) E (Sf,5J) U (S|,5|), we set tu(v) = defu(v) = n(u,v). 

We call a vertex u E S* bad if deiu(B*) - tu(B*) > |(A - Ax). 

1.2 For every bad u e 5*, we repeat the following until defu(B*) — tu(B*) = 
^(A-Ai): 

we choose v E B* with positive deiu(v) — tu(v) (note that u and v 
must be on opposite sides of the bipartition) and we add 1 to tu(v); if 
we have a choice, we always choose v with largest def(v) — t(v). 

It is easy to check that ^(B^) — t(5jf) — cs\ < ^§-8 after step 1.2. We call a 
vertex v E B* bad if def(w) - t(v) > ±(A - Ax). 



112 CHAPTER 6.   THE SMALLEST DEFICIENCY CASE 

1.3 For every bad « in B*, we set tr(v) = def(«) — ^(A — Ai) — t(v) if v is 
bad and tr(v) = 0 otherwise. 

We explicitely made sure that target conditions 6.2, 6.5 and 6.6 are satisfied 
by these initial assignments. Since t(v) < |def(«) + \8 for all « G B* and 
tu(B*) < \deiu(B*)+\ö for all « G S*, conditions 6.9, 6.10, 6.11 and 6.12 are 
trivially satisfied as well. We note, furthermore, that tu(B*) < ^deiu(B*) + 
^5 for all non-bad « G S*, and t(v) < ^def(«) for all v G B* with deficiency 
greater than A - Ax. So, t(B*) < ±defs*(B*) + %5 + \deir{B*) + §£ < 
\&et{B*) + 45 < |A + 46 which is much less than 3A1. Thus, condition 6.8 
is satisfied. 

We show next that 6.3 holds. If there are more than two bad (big or small) 
vertices then def(5*) - t(B*) > §(A - Ai - A9/10) > A - A:. If there are 
less than two bad vertices then t(B*) < ^def(i?*) + ^S, implying def(ß*) - 
t(B*) > ^dei(B*) — |<5 > A — Ai. Finally, if exactly two vertices u and v are 
bad, thendef(£*)-*(£*) > def(u)-*(u)+def(v)-t(u) > A-Ax if«,« G B*, 
and def(£*) - t(B*) > deiu(B*) - tu{B*) + defv{B*) - tv(B*) > A - Ai if 
u,v G S*. A similar argument shows that 6.3 holds for « G S* and v G B*, 
except if some of «'s remaining deficiency is induced by «. In that case, 
however, by our choices of vertices in step 1.2, tu(B*) < ^defu(B*) + ^5 + 
\TK. Since t(v) < ±def(«) + \5, it follows that t{B*) < idef(.B*) + |<J + y/Ä, 
implying def(B*) - t{B*) > A - Aj. 

It is clear that 6.7 holds if «, v G B* - B. If « G B* - B, v G B and 
/j,(u, v) > 1 then both def(«) — t(u) and def(«) — t(v) are greater than |(A — 
Ai) - //(«,«) > \A - A9/10. By claim 16, it follows that //(«,«) < 3 and 
def(«) < |A + A9/10. Thus, we see that t(v) < |A + 2A9/10, implying 
<(«) < idef(«) - ^A + 2A9/10 and also t(B*) < ±def(5*) - ^A + 3A9/10. 
So, we can insure 6.7, while maintaining the validity of the conditions we 
just checked, as follows: 

1.4 We add (J,(u,v) to tr(v) for every « G B for which there exists some 
u G B* such that 6.7 does not hold. 

Note that the total we add to t(B*) is less than 30 since there can be no 
more than 10 vertices of deficiency greater than |A — A9/10. If fi(u,v) = 1, 
we do step 1.4 as well, unless 6.3 fails to hold as a result (all previously 
checked target conditions remain satisfied). If 6.3 would fail, we do nothing 
as this is our special case. 
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It remains for us to modify, if necessary, our target assignments to satisfy 
conditions 6.1 and 6.4. Before starting that, we compute the difference 
t(B*) - t(B2). Let B\ and B\ be the sets of bad big vertices in B\ and 
B2, respectively, and let us assume that \B\\ — \B\\. Then t(B2) - t{B{) is 
within 30 of E*=flf(def(tO - *(A - Ax)) - £^(def(*;) - *(A - Ax)) + 

«(SJ -B\)- t{B*2 -B
b

2) = def(£?) - def(£2*) - (def {B{ -B\)- def(B2* - Bf)) + 
*(BJ -B\) - t{B*2 -B

b
2), and since def(5J) -def(S|) = Ai - 2cB + (A - Ax) 

and t{B\ - B\) - t(B% - Bb
2) is within 30VÄ of is. (5?) - ts* {B%), it follows 

thaU^*)-*^) = Ai-2(cB-fci) where kx is within §<J of |((A-Ai)- 
(def(5f-B{)-def(BJ-B|))-c5) and thus ±A-±cs-2£ < fcx < \A-cs+8. 
Using a similar argument, we obtain the same result if Bb\ = \B2\ + 1. 

If t(B*) and Ai have the same parity, then k\ is integer, as desired; other- 
wise, 

1.5 We add 1 to tu(v) for some v € B* with positive defu(u) — tu(v). 

Using simple parity arguments, we can see that all previously checked target 
conditions are satisfied. If t(B*) > Ai but t{B\) — t(B2) < A\ — 2c#, we 
add more to t(B*) until we obtain t(B*) - t(B2) = Ai — 2cg by repeating 
the following i(Ai - 2cB - {t{B\) - t{B%))) times: 

1.6 We add 1 to tUl{v\) and tU2{v2) for some «1,^2 € B{ with positive 
defMl(ui) > tui(vi) and defU2(v2) > tU2{v2) where u\ = r or u\ = s\ 
and «2 = r or «2 = S3. 

Note that we maintain the validity of target conditions 6.9 - 6.11 thanks 
to our choices of vertices in every iteration and because t(B\) — t(B2) < 
Ai — 2CB- Since we repeat 1.5 at most 6 times, it follows that 6.12 is 
satisfied. 

If t(B*) < Ai, we also must add more to t(B*) until we obtain t(B*) = Ai. 
Note that if t(B*) = Ai, all target conditions, except possibly 6.4 and 6.12, 
are trivially satisfied. We repeat the following until t(B*) = A\: 

1.7 We add 1 to tu(v) for some v in B* with defu(v) > tu(v) for u = r or 
«65* and with ^def(v)+|(J-t(i;); we choose v £ B{ \H{Bl)-t{B%) < 
\A-CB{= \<tö(Bl) + \8—\<tö.(Bl) — \8, otherwise we choose v E B2. 

If t(B{) — t(B2) < Ai - 2cß after step 1.7, we continue exactlt as in 1.6. 
Otherwise, all target conditions hold. 
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6.2.2    The targets for even \B*\ 

The target conditions 

If |5*| is even, the number of big vertices missed by the big edges of every 
matching must be even. It follows that t(B*) must be even too. In other 
words, if fa satisfies t{B{) - t{B\) = 2(cB - h) then kx must be integer. 
In addition, if k\ > 0 then k\ more big edges in B{ than in B\ will not be 
covered by U^Mj, and if k\ < 0 then \k\ | more big edges in B\ will not be 
covered by U^Mj. Since a subset of these edges eventually forms K, the 
edges of the final near-bipartite reduction N whose removal from N leaves 
a bipartite graph, we must choose these \ki\ edges to be incident to v\ or 
V2, depending on whether fti > 0 or k\ < 0. For this purpose we insist that 

t(B\) - t{B*2) = 2(cB - *i) for - ^A - 6 < kx < -A + 6 (6.13) 
o o 

The following target conditions are necessary and sufficient to insure that 
B* - v, for every v E B*, and B* + u, for every u E S*, do not induce an 
overfull subgraph in F 

2(def(w) - t{v)) < dei(B*) - t{B*) (6.14) 

2(defM(iT) - tu(B*)) < dei(B*) - t(B*) (6.15) 

To help our analysis and to ultimately satisfy property C, we require that 
big vertices stay big and small vertices stay small, and so properties 6.5, 
6.6 and 6.7 should be satisfied by the targets. We also insist on 6.8 to 
limit the number of marks per matching, 6.2 to include all small edges in 
E{Bl,Sl) U E(B%,S%) in the first Ai matchings and on property 6.12 so 
most vertices v are not marked much more than ^def(u) + ^S times. Finally, 
in order to put an even number of marks per matching in the marking step, 
we need that the targets satisfy: 

2t(v) < t(B*) for all v E B* (6.16) 

2tu{B*) < t(B*) for al\u,vE S* (6.17) 

The target assignments 
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We initially assign targets as we did in steps 1.1, 1.2, 1.3 and 1.4 of the 
odd case. This assignment satisfies condition 6.2 requiring that all small 
edges in E(B{, S{) U E(B2, S2) belong to the first Ai matchings, and also 
conditions 6.5, 6.6 and 6.7 insuring that smalls stay small and bigs stay big. 
The total number of targets, t(B*), is much less than 3Ax (required in the 
marking step) so 6.8 holds as well. Finally, we observe that our assignments 
satisfy t(v) < ^dei(v) + \6 + 3 for all v £ B*, and, as in the odd \B*\ case, 
ts* {B%) - ts* (SJ) is within fSoic. 

Let B\ and B\ be the number of bad vertices in B\ and B2, respectively. If 
|Bj| = \B%\, the difference t(5|) - t(5J) is within 30 of def(-B£) - def(BJ) - 
(def(52* - Bb

2) - def(B* - £*)) + (t(B* - Bb
2) - t{B{ - B\)). Since t{B* - 

B\) - t{B{ - B\) is within fö + 30\/A of cs, it follows that t(B*2) - t(B{) 
= 2(cb - ki) where |fei| < |A + d - 1. The same is true if \B^\ + 1 = \B%\. 
Thus, 6.13 is satisfied, unless k\ is not integer, in which case we just do 

1.5 If t(B*) is odd (i.e. ki is not integer) but all other properties hold, we 
just add 1 to tu(v) for some v 6 B* with deiu(v) > tu(v) for u = r or 
u = s, s', s". 

Since def(i?*) is even, there must exist such a vertex v, and by parity argu- 
ments, all checked conditions are still valid. 

We now modify the targets, if necessary, so the conditions 6.14, 6.15, 6.16 
and 6.17 hold: 

1.6 We recursively add 1 to tu(v) for some v G B* and u = r or u G S* 
such that def„(u) > tu(v) while one of the following holds: 

(i) there is some v\ G B* with q\ = 2t(vi) — t(B*) > 0 (more than 
half of the used targets (defined as t(B*)) is on v\), 

(ii) there is v2 G B* with q2 = 2(def(u2) -t{v2)) - (dei{B*)-t(B*)) > 
0, i.e more than half of the available deficiency (defined as dei(B*)— 
t(B*)) is on «a), 

(iii) there is some u\ G S* with q3 — 2tUl (B*) — t(B*) > 0 (more than 
half of the used targets is induced by ui), 

(iv) there is u2 G S* with q4 = 2(deiU2(B*) - tU2(B*)) - (dei(B*) - 
t(B*)) > 0 (more than half of the available deficiency is induced 
by «2)- 
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We first note that more than one of the above inequalities may hold. 
Actually, all of them may hold. There can be, however, only one 
vertex satisfying one particular condition. We pick u and v so that 
deiu(v) > tu(v) and all of the following are satisfied: 

if (i) holds, veB*-vu 

if (ii) holds, v = v2, 

if (iii) holds, u — r or u G S* — u\, 

if (iv) holds, u = U2- 

Finally, if we have a choice of vertex v to mark (i.e. if (ii) does 
not hold), we choose v e B\ if t{B*) - t(B{) > cB or v e B\ if 
t{B%)-t{B{)<cB. 

The number of iterations of 1.6, i.e. the total we add to t(B*), is q = 
msix{qi,q2,q3,q4}. If q = q\, then the total t(B*) after 1.6 is at most 2t(vi) 
and since t{vx) < \def(vi) + \5+4:, it follows that t(v) < \dei{v) + \8+^ for 
all v € B* implying target condition 6.12; a similar argument works when 
q — qz. Ifq = q2, then either there is a bad vertex in (B*—V2)US* and q2 < 4, 
oit{B*-v2) < ±def(B*-V2) + l5andq2 = def(v2)-t(v2)-^def(B*-v2) + 
\8 < ^def(u2) - t(v2) + \5. In either case t(v2) < \dei(v2) + ^6, implying 
6.12. A similar argument works when q = q\. 

6.2.3    The initial coloring 

We construct disjoint matchings M[, ...,M'Al such that U^M/ = E{B{) U 
E{Bl) — K\, where K\ is a set big edges chosen as follows: 

2.1 If k\ > 0 (where k\ is as defined in 6.4 for the odd \B*\ case or in 6.15 
for the even \B*\ case) then we choose some k\ edges in E(B\) incident 
to V\, the smallest deficiency vertex in B\; if k\ < 0, we choose some 
|fci| edges in E{B2) incident to v2, the smallest deficiency vertex in 
B2. 

Because dB*{v{) > 3, it follows that dB(vi) > A - A3/5 - 3. If fa > 0, then 
fa < \A + 2S < %dBl(vi) + A9/10 < dBl(vi). Similarly, I**! < dB2{v2) if 
fa <0. 

Because A(Bf), A(ß|) < \& + i$ < Ai ~ V^» and because the edge 
multiplicity in B{ and B\ is at most y/Ä, we can apply Foumier's edge 
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coloring algorithm for multigraphs to Ai color B\ and B\- We can thus 
construct an initial coloring as follows: 

2.2 We color the edges of E{B\)V}E{B\)—K\ with Ai colors using Fournier's 
algorithm to obtain matchings M\,..., M\x such that U^M/ = E{B{)- 

Ki and matchings M\,..., Af|i such that U&i-M? = E(BV) ~ Ki- BY 
applying the balancing procedure from 3.2.2, we insure that Ml,..., M^ 
are balanced in B{ and M\,..., M\   are balanced in B\. 

2.3 We set M[ = M}\J Mf for % = 1,..., Aj. 

Note that 0 < \Mj\- \M}\ < 1 and 0 < \Mj\ - |Af?| < 1 for 1 < i < j < Au 

and 0 < \M}\ - \Mf\ < 1 for 1 < i < Ai. Actually, \M}\ - \M?\ = 1 for 
exactly CB — k\ indices i. 

6.2.4    The marking 

Using the targets, and by reordering and modifying the initial matchings, 
we define a proper marking over modified disjoint matchings M[,...,M'A 

such that U^M/ = (E(B*) - £(i?i)) U (E(B%) - E(R2)) - Kx where: 

(i) m^x{v) — tr(v) and m^'(«) = tu(v) for every v £ B* and u G S*. 

(ii) J < n^,«) = n(B£,i) < 76 for every i = 1,..., Ai, 

(iii) Ri and -R2 are reject subgraphs of maximum degree less than A4/5 and 
1^(^)1 = \E(R2)\ < 2A. 

We recall that n(Bl,i) and n(B2,i) are the numbers of vertices v in B{ and 
B%, respectively, missed by M[ such that m(v, i) = 0. These are exactly the 
vertices we must patch later. We also recall that a marking is proper over 
initial matchings M[,..., M'Ai if the big edges of every M[ miss every big 
vertex v such that m(v,i) = 1. 

We start the marking procedure with mu(v, i) = 0 for all v € B*, u = r and 
u £ S*, and all i = 1,..., Ai. We also call all M[ unused. Then we repeat 
the following for i = 1,..., Ai: 

3.1 We mark a few of the big vertices, by setting mr(v, i) = 1 or mu(v, i) = 1 
for a few v E B* and u £ S*. 



118 CHAPTER 6.   THE SMALLEST DEFICIENCY CASE 

3.2 We choose some unused M' and switch it with M[. We then modify (the 
new) M[ so it misses all vertices v such that m(v,i) = 1. Finally, we 
add the small edges induced by the marking to M[ and call M[ used. 
Note that M[,...,M- are used after this step, while M-+1, ...,M'Ai are 
unused. 

3.3 We delete up to four big edges of M[ on one side of the bipartition to 
insure that n{B\,i) = n{Bl,i). 

We now give the details of each step. 

Step 3.1: choosing the marks 

We describe first how we choose what vertices to mark in iteration i. For that 
purpose, we introduce some notation. We use ml

u(v) to denote J2)=i mu(v, j) 
and ml(v) to denote ml(v) + ^2ueS* rnu(v), and we say that v G B*US* has, 
in iteration i, y available targets if either v G B* and y = t(v) — ml~l(v) or 
v £ S* and y = tv(B*) - mi^~l{B*), respectively. 

If \B*\ is odd, we set x = \{t(B*) - Ai) which is less than A: since t(B*) < 
3Ai by target condition 6.1. Then, in iteration i, we mark the vertices as 
follows: 

3.1.1 If i < x, we set mUl(vi,i) = mU2(v2,i) = rnU3(v3,i) = 1 for some 
different vertices «1,^2)^3 G B* and Uj = r or Uj € S* such that 
tu {vj) > ml~l(vj) for j = 1,..., 3 and no two Uk and m (1 < I < k < 3) 
are the same small vertex. We insist that the two vertices with largest 
numbers of available targets are among v\, V2, «1,1*2- 

3.1.2 If i > x, we set mr(v,i) = 1 for some v G B* with tr(v) > m*-1^) or 
we set mu(v, i) = 1 for some v G B* and u G S* with tu(v) > ml~l(v). 
In the special case when target condition 6.8 holds, we choose, in 
iteration i = x + 1, v G B* — b\ — 62, and we also temporarily mark 
61 and 62 (because we will add the edge (61,62) to Mi in teh marking 
step). 

Before every iteration i < x, every vertex v G B* U S* has at most Ai — 
(i — 1) available targets, and at most 2 have exactly Ai — (i — 1) available 
targets (since t(B*) < 3Ai, by 6.9). If only two vertices v\ and V2 with 
positive available targets remain just before iteration i < x, then our choice 
of vertices to mark would contradict conditions 6.9, 6.10 or 6.11.   When 
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i > x, t(B*) — mt~~1(B*) = Ai — (i — 1), implying that we always can choose 
the vertices to mark as required. 

If \B*\ is even, we set a; = max{0, ±(t{B*)-2Ai)} andy = min{Ai, \t(B*)}. 
Note that either x = 0 or y = 0 but not bth. Since t(B*) is much less tahn 
3Ai (by target condition 6.1), it follows that x < |A+|<5. Then, in iteration 
i, we mark the vertices as follows: 

3.1.3 in < x, we set mUl(vi,i) = mU2(v2,i) = mU3(v3,i) = mUi(v^i) = 1 
for some different vertices V\,V2,vz,v± G B* and Uj = r or Uj =£ S* 
such that tUj (VJ) > m^T1(vj) for j = 1,..., 4 and no two Uk and ui (1 < 
I < k < 4) are the same small vertex. We insist that the two vertices 
with largest numbers of available targets are among vi,U2)Wi,«2- 

3.1.4 If x < i < y, we set mUl(vi,i) = mU2(v2,i) = 1 for some different 
vertices v\, V2 G B* and Uj = r or Uj E S* such that tUj (VJ) > ml~l{vj) 
for j = 1,2 and u\ and U2 are not the same small vertex. We insist that 
the two vertices with largest numbers of available targets are among 
Vi,V2,Ui,U2. 

3.1.5 If i > y, we mark no vertex. 

It is easy to check that our target conditions insure the feasibility of this 
marking. 

Step 3.2: constructing the matching 

We start by calling all matchings M[, ...,M'A unused. Then, in every iter- 
ation i, we associate with every v such that m(v,i) = 1) a matching M[ 
missing v such that m(v,iv) = 0, if there is such a matching. Prom target 
condition 6.10, and since v is missed by at least ^def(u) + |<J initial match- 
ings, we see that such a matching M[ must exist for every marked v in all 
but, at most, 26 iterations i. We then choose some unused matching ML 
switch it with M[ and, then, we modify (the new) M[ so it misses every 
marked vertex v. We then add the small edges induced by the marking and 
the edge (61,62), in the special case, to M\ and call it used: so, the used 
matchings are M{, ...,M[ after iteration i. 

For every vertex v that is hit by M[ (with an edge (u, v)), we use one of the 
following procedures: 

first edge reject: We simply reject (v,u), as shown in figure 6.1. 
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r\r\     r\r\ 
k * * * * « »        * 

X   *---•—•■ 
V U V u 

before after 

Figure 6.1: M- (full) and M'iv (dashed) before and after, with v marked in 
M[, the first edge reject procedure 

any edge reject If M[ misses u and if either M[ is unused or M[ is used 
and m(u, iv) = 0, we switch the color of (v, u) from M[ to M[v and we 
reject an edge (x, y) in M[ on the side of the bipartition to which v and 
u belong (so that \M'iv r\E{B\)\ and \M'iv r\E(B%)\ remain unchanged). 
See figure 6.2. 

/--\/--\     r\r\ 
x--- 

U V u 

before after 

Figure 6.2: M[ (full) and M[   (dashed) before and after, with v marked in 
ML the any edge reject procedure 

second edge reject If there is w G B* such that (u, w) € M-v, we reject 
(u, w) and we switch the color of (v, u) from M[ to M[v. See figure 6.3. 

We will make sure that no vertex is adjacent to more than A4'5 rejected 
edges by carefully choosing, in every iteration i, the unused matching M'j 
we switch with M[ and the reject procedure. We do this as follows: 

3.2.1 If i > Ai—8A3/4, or if, for some marked vertex v, there is no matching 
Miv missing v such that m(v,iv) = 0, we pick any unused Mj and we 
use the first edge reject procedure. 
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X---     • •--•• 
V U W V u w 

before after 

Figure 6.3: M[ (full) and M[   (dashed) before and after, with v marked in 
M/, the second edge reject procedure 

3.2.2 If i < Ai — 8A3/4, we choose an unused M'- such that for every marked 
vertex v hit by an edge (u, v) of ML either 

(i) u is missed by M{v and, if M{v is used, m(u,iv) = 0, or 

(ii) there is an edge (it, w) G Miv and no edge incident to u or w has 
been rejected in the previous jA1'4 iterations. 

In case (i) we use the any edge reject procedure, in which case we 
choose the "any" edge (x,y) to be rejected so that no edge incident to 
x or y has been rejected in iterations i — \y/A\,...,i — 1. In case (ii) 
we use the second edge reject procedure. 

Since no more than than four edges are rejected in each iteration, less than 
2A1/4 edges of M{v have endpoints incident to an edge rejected in one of 
the previous 5A1/4 iterations. In addition, if Miv is used, no more than 4 
vertices can be marked in Miv. So, because the multiplicity of an edge is at 
most y/Ä, it follows that at most 2A3/4 + 3\/Ä unused matchings have an 
edge (v, it) where u is either an endpoint of an edge rejected in the previous 
I A1/4 iterations or u is marked in Miv. Because no more than four vertices 
are marked in M,', less than 8A3/4 unused matchings are not available, so 
at least one unused matching is available. 

No vertex in B* is incident to more than 8A3/4+2£+ i^i/4 < \ A4/5 rejected 

edges. The total number of edges rejected is at most 3Ai. We also note 
that no more than 21 unmarked vertices are missed by M[ on one side of the 
bipartition than on the other, for 0 < / < 4. 

Step 3.3: equalizing the unmarked vertices 
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We now reject additional edges to insure n{B\,i) = n(B2,i) and, ultimately, 
\E(R!)\ = \E(R2)\ < 4A: 

3.3 We reject (up to 4) edges in M[ to insure that the unmarked big vertices 
missed by M[ are split evenly between B\ and B%. When picking the 
edges to reject, we insist that their endpoints have not had an incident 
edge rejected in the previous vA iterations. 

Since there can be at most Ai iterations, no vertex is adjacent to more than 
\fK edges rejected in 3.3. Furthermore, \E{R{)\ = \E{R2)\ < 3Ai +4A: < 
4A and A(R1),A(R2) < ±A4/5. 

Finally, we show: 

Claim 22 5 < n{B*x,i) = n(B$,i) < 75 for every i = 1,...,AX. 

Proof: We explicitely made sure that n(B{,i) = n(S|,z) in step 3.3 
of iteration i. So we only need to show that 6 < n(B\,i) < 15 for any 
i = 1,..., Ai. We first note that 

Ai 

J^niBli)    =    ^(Ai-dßIW-mAlW)+2|Äi| + 2|^1| 
»=i veB{ 

Since ZveBi (Ai - dB1 (v)) < E,GB* (5A + 5 - \dB* («) + \5) < idef(5J) + 
15\B*\ < |A + |<y|SJ|, it follows that n(B{,i) < -^{\5\Bl\ + 5A) + 8 < 15. 

Similarly, from ^w6B. (Ai-dB.(t;)) > \S\B{\ andmAl(^*) < |A, it follows 

that n{B{,i) > £(l6\Bt\ - §A) - 8 > 5     D 

6.2.5    The patching 

For i = 1,..., Ai, we recursively obtain Mj by augmenting the vertex disjoint 
patches we construct between pairs of unmarked big vertices missed by M\ 
in F = G* — K\ — Ri — R2 — M\ — ... — Mj_i. After each augmentation, 
we add the edges of M[ left uncolored by this augmentation to the reject 
graphs R\ or R2.   If we fail to construct a patch between two unmarked 
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vertices missed by some M-, we will show the existence of and construct a 
fail pair (X,Y). On the other hand, if we are successful!, the big edges of 
every matching Mj will miss only the vertices v marked in it (i.e. all v such 
that rn(v,i) = 1). 

We now describe the construction of the vertex disjoint patches of M\ in 
F = G* - Ri - i?2 - Mi - ... - Mi-i. We recall that a patch P between 
unmarked vertices x G B{ and y G B\ missed by M[ is a path from x to 
y with edges alternating between E(F) n E{Bl,B%) and M[ D E(B). For 
r = 1, ...,n(J3*,i), we recursively construct the patch Pr as follows: 

4.1 We pick a pair of unmarked vertices xr and yr on opposite sides of the 
bipartition so that xr and yr are missed by M[ and have not yet been 
patched. We pick yr so it belongs to B. In choosing xr we always give 
priority to unmarked, missed vertices in B* — B. 

Since \B* — B\ < 2A1/5 < n(B*,i), there are more than \B* - B\ vertices 
in B that are not marked and are missed by M[ - our choice of the patch 
endpoints xr and yr is thus feasible. 

4.2 We define unavailable and usable vertices. We call v G B unavail- 
able if it is an internal vertex of any patch Pi,..., Pr-i or of any patch 
constructed for one of the previous 8[A1/] matchings (M;_i,..., Mi — 
8[A1/10]). We note that if a vertex is not unavailable, then no edge 
incident to it has been rejected while obtaining one of the previous 
8 [A1/10] matchings. We call v E B usable if v = yr or (v,u) € M[ 
and neither v nor u is unavailable. If xr € B* — B, we also define Y°- 
unavailable and y°-usable vertices. We call v £ B y°-unavailable 
if it is an internal vertex of any patch Pi, ...Pr_i, or if it is an endpoint 
of the second edge of a patch out of a vertex in B* — B constructed for 
one of the previous 8 [A1'10] matchings. We call v 6 B is y°-usable if 
v = yr or (v, u) £ M\ and neither u nor v are Y°-unavailable. 

4.3 We recursively build the sets X1 and Yl for 0 < / < 6 [A1/20] as follows: 

X° = {xr}, 
if xr G B* - B, Y° = {v G B : v is Y°-usable and (xr,v) G E(F) n 

iixr G B, Y° = {v G B : v is usable and {xr,v) G E{F)f]E(B^,B^)}, 

X1 = {v G B : 3u G Y'-1 such that (u,«) G M[} 
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Yl = {v E B : v is usable and 3u E X1 such that (u, v) E E(F) D 
E(BUB2)}. 

If xr E B* - B, then at most GfA^s^SA1/10 vertices in B belong to 
Pi,..., Pr_i and, as such, are y°-unavailable. Furthermore, at most 8[A1'10] 
\B* — B\ < 8[A1/10]2A1/5 vertices are endpoints of the second edge of a 
patch out of a vertex in B* — B constructed for one of the previous 8 [A1/10] 
matchings, and as such, are y°-unavailable. So, at most A2'5 vertices are 
not y°-usable. 

4.4 If yr E Yi for some 0 < j < 6 [A1/20], we construct the patch defined 
by the sequence of vertices xr, y°, x1, y1,..., yJ'_1, x-7, yr where xl E X1, 
yl E Yl, (xr,y°), (xj,yr) and (xl,yl) belong to E(F)r\E{B{,B%) and 
(yl,xl+1) EMI 

Note that each patch contains the same number of edges from E{B\) and 
from E(B2); so when done, \E{Ri)\ = \E(R2)\ < 24A15A1/20 < ^A19/10. 
Furthermore, no vertex is incident to more than A^10 < |A9'10 edges 
rejected in this step. 

4.5 If there is no Y^ containing yr, then we pick the smallest j > 1 such 
that \YJ\ < \XJ\ + iA19/20. If X' C Si then the pair {X,Y), defined 
by X = {v EXi HB : dF

B2{v) > ^A - A9/10} and Y = NF{X) n B, 
form a fail pair. 

If F = G* - Mi - ... - Mi-i, then dg. (v) = A-A1- (def(v) - mAl («)) > 
i(A - Ai) > |A - A9/10. Since A(i2i) and A(S2) are less than A9/10, it 
follows that d%2(v) > |A - |A19/20 for every v E B\ - vi, and similarly, 
d^(t;) > \A - IA19/20 for every v E S2*. Since dg.(wi) > A(F) - 2 and 
because |üTi| < \A, it follows that dg2(«i) > jA - ^A19/20. 

Claim 23 (X, y) forms a fail pair in (Bi,B2). 

Proof: To simplify notation, let x = xr E B{, so that y = yr E B2. Let us 
first set an upper bound on the sizes of Pi and F2, the unavailable vertices 
in Si and B2, respectively. Since a patch contains at most 6[A1'20] vertices 
in Si, and since there are at most 86 patches per matching, it follows that 
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l^xl < 8LA1/10jg^6rAl/201 < lA19/20 

for large enough A. A symmetrical argument gives \F2\ < |A19//2°. 

If a; e B*—B, there are at most A2/5 y°-unavailable vertices. Since dg2 (x) > 

jA — iA19/20 and because the edge multiplicity is at most VÄ, Nß2(x) > 

\\fK and IX1! = \Y°\ > Ng2(x) - A2/5 > 0. So, there must exist a vertex 

veX1, which implies that \X2\ = 1*^1 > d^ (v) -\Fi\>\A- ±A19/20. If 
xeB then \X2\ = \Y1\>\A- |A19/20 easily holds. 

Suppose that \Yl\ > \Xl\ + ±A19/20 for all 2 < I < [6A1/20] - 2. Then, 
|X6rA1/2o1_2| > 3A > i^ a contradiction. 

So we must have |y'| < |X^'|+±A19/20 for some j between 1 and [6A1/20] -2, 
and we pick the minimum j satisfying this property. Let E\ and E2 be 
subsets of Si and B2, respectively, missed by M[. Clearly, \Ek\ < n(B^,i) + 
m{B*k,i) < 86 + 2 < 105. If j is even (and X* C B1 and Y* C B2), we 
define Y = Yi U E2 U F2; if j is odd (and X* C 52 and yj C J5i), we define 
y = yj U JSi U Fx. Let I = {»eP: d£(ü) > \A - A19/20}. (X, y) forms 
a fail pair by the following three properties: 

\Y\ < \X\ + A19/20. 
Proof: We assume X C B\ and Y C J32; a symmetric argument proves 
the statement when X C B2 and 7c5i. We note that \Y\ < \Yj\ + 
\E2\ + \F2\ < |X^| + iA19/20 + 105+|A19/20 < |XJ'| + f A19/20. Finally, 

we argue that |X^'|. < |X| + |A19/12 by showing that X-?-X C L where 
L = vi + {veB: def(u) > 2v/Ä~} and \L\ < VÄ): if v e Bx - L then 
4» > <*£.(«) - A3/5 > A(F) - 2VS-A3/5 > \A - ±A19/20, 
implying v 0 X-5; — X. 

For all « € X: dY(v) >\A- A19/20. 
Proof: Assuming X C Bu dY{v) > d^{v) = d%2(v) > ±A - |A19/20 

by the definition of X. A symmetric argument applies if X C B2. 

I£XcBk then \Bk\ - \X\ > |A - A19/20. 
Proof: If X C B\ then y must belong to B2 — NF{X^) which implies 
that d%{y) = 0. Since y e B2 then d^{y) > \A - ±A19/20. It 
follows that \Bi-X\ > |A - ±A19/20.   If X C B2, we first note 
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that \N^ (y)\ > \A - ±A19/20 (since y G B2). Let Z be the subset of 
Nß (y) of vertices incident to some edge of M2' n E(Bl). It is easy to 
check that Nß2(y) — Z contains only vertices that are missed by M/, 
that belong to B* — B or that are forbidden. Since there is fewer than 
m(Bl, i) +n(Bl, i) + \FX\ + \B* -B\< A19/20 such vertices, Z must be 
non-empty. Let (u, v) be an edge of M[ in E(Bl) with v € Z. Since 
dß2 (u) > \A — |A19/20 and d% (u) — 0 (because otherwise a patch t y 
through a vertex in X and vertices u and v would have been possible), 
|52-X|>iA-iA19/20. 

D 

6.3    The reject coloring pass 

Once we complete the first pass and delete the matchings Mi, ...^M^ from 
G*, we obtain the reduction F = G* - U^M = Ri + H± + R2 + Kx 

where Hi C E{B{ U S^B^ U S2), K\ is a set of \k\\ edges incident to 
v\ or i>2 depeneding on whether k\ > 0 or k\ < 0 as defined in 6.4 or 
in 6.13 and R\ and R2 are reject graphs in B{ and B\, respectively, of 
maximum deggree less than A9/10 such that E{R\)\ = \E(R£)\ < ^A19/10. 
The deficiency remaining in the graph F at each vertex v is def(w) — mAl (u), 
where mAl(v) = tu(v) for every v € B* and « = r or u £ 5*. We will use 
the fact that the target conditions are satisfied by the marking of the first 
Ai matchings. 

In the reject coloring pass, we will attempt to construct the disjoint match- 
ings MA1+I, ..., MAJ+A2 

m F sucn tnat N = F — U^M^+i is a reduction 
of F (and thus of G*) such that either N is bipartite, or: 

A. N = H + K where E(H) C E(B? U S2*, £2* U S2*) and K is a subset of 
edges in K\. 

B. B*, B* — v for all v £ B* and i?* + u for all u G S* do not induce an 
overfull subgraph of maximum degree A(N) in N. 

C. d^,(v) > ^A(N) for every v G B*, d^,(u) < ^A(N) for every u G S* 
and e^,(v) + d^_v(u) > A(N) for every u,v £ B*. 

By lemma 23, if N satisfies these three properties then N does not contain 
an overfull subgraph of degree A, implying that N is A(iV) edge colorable. 
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We will denote YliJi~  2 fn(v, i) by m(v). To satisfy property C, the marking 
must satisfy: 

def(«) - m(v) < \A(N) for v £ B* (6.18) 

defu(5*) - mu{B*) < ^A{N) for u E S* (6.19) 

dei(v) - m{v) + dei{u) - m{u) + fiN(u, v) < ^A(N) for «,»6^ (6.20) 

We call v £ B* bad if def(w) > %A(N) = ±(A - Ax - A2), and we call 
u £ S* bad if defu(ß*) > A - Ax - \8. Note that if u £ S* is not bad, 
then the remaining deficiency in F induced by u, def„(i?*) — mu(B*), is no 
greater than |(A — Ai). We observe that, since the marking of the first 
Ai matchings satisfies target conditions 6.5 - 6.7, the properties 6.18 - 6.20 
will hold if we mark every bad big vertex in at least 5A2 of the last A2 
matchings and we insure that every bad small vertex induces a mark in at 
least |A2 of the last A2 matchings. 

Property B will hold in the odd \B*\ case if and only if 

def(B*) - m(B*) > A{N) (6.21) 

and in the even \B*\ case if and only if 

2(def(u) - m(v)) < def(B*) - m{B*) for all v £ B* (6.22) 

2{defu(B*) - mu{B*)) < def(B*) - m(B*) for all u £ S* (6.23) 

Let rib and ns be the numbers of bad big vertices and bad small vertices, 
respectively. In this, smallest deficiency, case, nj is at most 10 and the only 
candidates for bad big vertices are the 10 smallest degree vertices 61,63,..., 69 
in B\ and &2,&4,---Ao in B% such that def(&i) > def(&2) > ... > def(feio). 
Let c be the smallest even integer greater than |A2- We obtain the set 
K by removing m edges from K\, where m depends on the number of bad 
vertices. If \B*\ is odd, then m = 0 if k\ < ^A or rib,ns are both odd; if 
k\ > JQA, then m = ^(A2 — c) if rib + ns is odd and m = \A^ if rib, "s are 
both even. 
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We construct the matchings MA1+I, ...,MA1+A2 covering E(R\) U E(R2) U 
{K\ — K) in three steps. 

6.3.1 The initial coloring 

We first construct an initial coloring: 

1. We construct initial matchings M[, ...,M[      balanced in J5J and in B| 

and covering R\ U R2 U (K\ - K) using Fournier's edge coloring algo- 
rithm and our balancing procedure (see 3.2.2). We insist that the last 
m matchings have one more edge in B{ than in B\ and that the first 
\c matchings miss all big bad vertices. 

Since A2 > lA19/20 and \E{RX)\ = \E(R2)\ < iA19/20, it follows that 
\M[ n E{B*)\ and \M[ n E{B*2)\ are less than [iA19/20]. 

6.3.2 The marking 

We use the initial coloring to construct disjoint matchings M^l+1,..., M'^i+A2 

covering E(R\) U E{R2) U (K\ - K) and to define a proper marking over 
those matchings such that, for every i = 1,..., A2: 

(i) |MAl+i n £(Bf )| and |MAl+i n E(B*)\ are less than ^A19/20], 

(iii) m(ß*, Ai + »') < 10, and 

(ii) n(ßi,Ai + i) = «'(ßi,Ai + *) = n(B*,Ax +«) = »(-82,Ai + *')• 

The second condition implies that in no maching M'^ +i a vertex v in B* — B 
is missed and not marked. So, we will only need to patch vertices in B in 
the patching step. We define the marking and we construct the matchings 
by repeating the following for i = 1,2,..., ^A2: 

2.1 We define mr(v, Ai+2i- 1), mu(v, Ai + Ii - 1), mr(v, Ai + 2i), and 
mu(u, Ai + 2i) for every v £ B* and u € S1*. 

2.2 We construct disjoint matchings M^i+2i_1 and MAJ+2; in F' = F — 
M^ +1 — MAI+2 — ...M^+2i_2 so their union contains M[. 
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We describe the details of each step in the case when \B*\ is odd first. 

Step 2.1: The marking in iteration i for odd \B*\ 

We first define the marking in iteration % < ^A2 in the case when there is 
no bad vertex (i.e. rib + ns = 0): 

2.1.1 If k\ < j^A (in which case m — 0), we set mSl(vi, A\ + 2i — 1) = 1 
for some vx 6 B{ with def^^i) > mf1

1+2»_2(t;i); let Wx = {vx}. 

Then, we set mSl(v2,Ai + 2i) = 1 for some v2 G B\* — v\ with 
def8l(«2) > m^+2i-l{v2) and (vuv2) 0 M/. Let W2 = {v2}- 

2.1.2 If fci > ^A (in which case m = 5A2), we set mu(vi, A\ + 2i — l) = l 
for some v £ B^ with defu(vi) > m^1+2l~2{vi) where u = r or u = s2. 
Let Wi = {vi). 

Then, we set mu(v2, Ai + 2i) = 1 for some «2 € B\ with defu(u2) > 
m^1+2z_1(v2) where u = r, u = s\ or w = S3. Let VF2 = {^2}- (We 
illustrate the marking in figure 6.4.) 

\ 

(a) 

VlX 
(b) 

Figure 6.4: 2.1.2: M[ (a) and the marking in M!^_x (b) and M£ (c) 

In step 2.1.2, the remaining deficiency in B\ and B\ is at least Ai — k\ > 
1A - A9/10 and fci > ^A2, respectively. 

If rib + ns > 0, we need to define a marking in which all bad big vertices are 
marked at least 5A2 times and all bad small vertices induce marks at least 
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^A2 times.  To do this we define the marking in every iteration i < \c in 
one of the following ways: 

2.1.3 If rib + ns is odd, we set mr(v, Ai + 2i — 1) = 1 for every bad v G B*. 
We then set mu(v, Ai +2i — 1) = 1 for every bad u G S* where v G B* 
is chosen so that deiu(v) > m^1+2l~2 > 0; let W\ be the set of big 
vertices v such that m(v, A\ + 2i — 1) = 1. 

Then, we set mr(v, A\ + 2i) = 1 for ever bad v G B* and mu(v, Ai + 
2i) = 1 for every bad u G S* where v G B* is chosen so that defu(v) > 
m^1+2i_1 and there is no u G W\ with (u, u) G M\. Let W2 be the set 
of big vertices v such that m(v, A\ + 2i) = 1. 

2.1.4 If n;, and ns are both odd (in which case m = 0), we first pick the two 
least recently chosen vertices v\, V2 among the bad vertices in B\ U 5|. 
(For example, v\,V2 = &i, «i if nb = ns = 1.) We set mr(w, Aj + 2« — 
1) = 1 for every bad v G B* — v\ and mu(v, Ai + 2« — 1) = 1 for every 
bad it G S*-vi where u G 5* is chosen so that defu(v) > m^1+2l~2(v). 
Let W\ be the set of big vertices v such that m(v, Ai + 2i — 1) = 1. 

Then, we set mr(v,Ai + 2i) = 1 for every bad v G B* — V2 and 
mu(w, Ai +2i) = 1 for every bad w G 5* — V2 where v G B* is chosen so 
that deiu(v) > m^1+2i_1(v) and there is no u G V^i with (v,u) G M/. 
Let W2 be the set of big vertices v such that m(v, Ai + 2i) = 1. (We 
illustrate the marking when n& = ns = 1 in figure 6.5.) 

2.1.5 If rift and ns are both even and ki < ^A (in which case m = 0), we 
do as in 2.1.3, with the following addition: if s\ is not bad, we add it 
to the bad vertices, otherwise we add 53. 

2.1.6 If rib and ns are both even and k\ > j^A (in which case m = 5A2, 
we first pick a least recently chosen bad vertices »1 £ 5J U S^ and 
v2 G B% U S*. We set mr(v, Ax + 2i - 1) = 1 for every bad t> G 5* - vi 
and we set mu(v,Ai + 2i — 1) = 1 for every bad u E S* — v\ where 
v G -B* is chosen so that def„(u) > m^1+2z~2(v). Let Wx be the set of 
vertices such that m(v, A\ + 2i — 1) = 1. 

Then, we set mr(v, Ax + 2i) = 1 for every bad v G B* — V2 and we set 
mu(v, Ax +2«) = 1 for every bad u G S* — V2 where v G B* is chosen so 
that defu(u) > m^1+2i_1(?;) and there is no u G Wi with (u,tt) G M[. 
Let W2 be the set of vertices such that m(v, Ax + 2i) = 1. 
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Figure 6.5: 2.1.4: M[ (a) and the marking in M^_x (b) and M^ (c) 

In all iterations i > |c, we define the marking exactly as in 2.1.1 or 2.1.2, 
except if nj = ns = 1 in which case we just keep doing 2.1.4. 

Step 2.1: The marking when \B*\ is even 

We define the marking in one of several ways, depending on the number 
of bad vertices. If the total number of bad vertices, n& + ns, is even, then 
m = 0, all initial matchings have an equal number of edges in B{ and B^ 
and we define the marking in iteration i < \c as follows: 

2.1.1 If rib + ns is even, we set mr(v,Aj + 2i — 1) = 1 for every bad big 
v and, for every bad « 6 S*, we choose a different, unmarked and 
non-bad vertex w £ B* such that de£u(v) > m^1+2z~2(v) and we set 
mu(w, Ai + 2i - 1) = 1. Let Wx = {t> G B* : m(v, Ai + 2t - 1) = 1. 
(Part 1) 

Then, we set mr(v, Ai+2i) = 1 for every bad v € B* and, for every bad 
u £ S*, we choose a different, unmarked and non-bad w € B* such that 
defu(w) > m^l+2l^l(w) and there is no w1 € W\ with (w,w') £ M\ 
and we set mu(w,Ai+2i) = 1. Let W2 = {v £ B* : m(v,Ai+2i — l) = 
1. (Part 2) (We illustrate the marking when nf, = ns = 1 in figure 6.5.) 

We put no marks in iterations i = he + 1,..., 5A2. 



132 CHAPTER 6.   THE SMALLEST DEFICIENCY CASE 

y . 
•     0>) 

o 
s. 

^ ♦ 

(a) 

Figure 6.6: 2.1.1: M[ (a) and the marking in M^ (b) and M£ (c) 

If rib + ns is odd and at least 5, then m = 0 and we define the marking in 
iteration i < ^c as follows: 

2.1.2 We pick the two least recently chosen two bad vertices «i, t>2 in B^USf 
if ns is even, or in B\ U 5| if ns is odd. We then define the marking 
as in 2.1.1 except that we do not use v\ in the first part, and V2 in 
the second part. 

We put no marks in iterations i = he + 1, .., 2« 

If nb + ns — 1 or nb + ns = 3, we need to be more careful in defining our 
marking. We consider first the cases when ns is even and k\ < ^A, or ns 

is odd and k\ > — ^A. In both cases we defined m — 0, and so all initial 
matchings have the same number of edges in B{ and B\. If ns is even and 
k\ < ]^A, we define the marking in iteration i < |c as follows: 

2.2.3 We do as in 2.1.1 and, in addition, we set mu(v, Ai + 2i — 1) = 1 in 
Part 1, for some non-bad vertex v € B{ and for u = r or for non-bad 
u e SI such that defM(v) > m^1+2t^2(v), and we set mu(v, Ai+2«) = 1 
in Part 2, for some non-bad v e B\ and for u = r or for non-bad u € S* 
such that deiu(v) > m£1+2i-2{v). 
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We put no marks in iterations i = ^c+l,...,^A2. We can choose a vertex v 
as desired, in parts 1 and 2, because there is at least |A available deficiency 
in B\ that is not on bad big vertices or induced by bad small vertices, which 
follows from (def(£2*) - mAl(#2*)) - (def(£*) - mAl(5f)) = 2kx < \A and 
the fact that there is more than |A — 5 more bad available deficiency in 52 

and B\. We omit the case when ns is odd and k\ > — ^A as the marking 
is symmetric to 2.2.3. 

If rib + ns = 3, ns is even and k\ > JQ A, then m = |c and the first ^c initial 
matchings have one more edge in B*[ than in B^ ■ The two possible cases are 
when 61,62, &3 are bad and when s2, «i, b\ are bad. We omit the second case 
as it is similar to the first, for which we define the marking as follows: 

2.2.4 If i < ±c, we set mr(bi, Ai + 2% - 1) = mr(63, A: + 2i - 1) = 1 and 
let W\ = {61,63}. Then we set mr(61, Ai + 2%) = mr(62, Ax + 2i) = 1 
and let W2 = {61,62}■ 

If ^c+1 < i < \c, we set mr(b2, Ai + 2i — 1) = mr(&3, A\ + 2i — 1) = 1 
and let W\ — {b2,63}. Then we set mr(b2, Ai+2i) = mr(bs, A\+2i) = 
1 and let W2 = {b2,b3}. 

We put no marks in iterations i = ^c+l,...,^A2- Note that each bad vertex 
is marked |c > ^A2 times. If rn, + ns = 3, ns is odd and k\ < — ^A, then 
m = —\c and the first |c initial matchings have one more edge in B\ than 
in B\. The two possible cases are when b\, 62, &3 are bad and when s2, si, &i 
are bad. We omit the definition of the marking in this case as it symmetric 
to 2.2.4. 

If n& = 1 and k\ > ^A then m = ^A2, all initial matchings have one more 
edge in Bf than in B^ and we define the marking in iteration i < ^A2 as 
follows: 

2.1.2 Wesetmr(6i,Ai+2i-l) =mu(v,A1+2i-l) = 1 for some v € B$-bi 
with defu(v) > m^1+2,"2(») where u = r or u = si. Let W\ = {61, v}. 

Note that m(v, Ai + 2«) = 0 for all v £ B*. We can choose v with available 
deficiency because def(f?2 — h) — mAl(B% — bi) > k\ > ^A, which follows 
from target conditions 6.13 and 6.14. If s\ is bad and k\ < — ^A, then 
m = — 5A2 and all A2 initial matchings have one more edge in B\ than in 
B\ and we define the marking as follows: 
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2.1.3 We set mSl(vi, Aj+2i-l) = mu(v2, A\+2i-l) = 1 for some different 
vertices vi,v2 G B\ with defSl(vi) > mf1

1+2?_2(vi) and deiu(v2) > 
m^1+2?_2(v2) where u = r or u = S3. 

Again, m(v,Ai + 2i) = 0 for all v € B*. We can choose v\ because 
defSl(-B^) — mAl(Bi) > |A — 6. We can choose v2 because there is at 
least k\ > JQA available deficiency in B\ that is not induced by s\, which 
follows from target conditions 6.13 and 6.15. 

Step 2.2: constructing M/\1+2i-i and M&l+2i 

2.2.1 We remove from M\ all edges incident to vertices v such that m(v, Ai + 
2« -1) = 1, and we add them to MAi+2i. Since none of these edges be- 
long to {Wi,W2), they miss all vertices v such that m(v, Ai +2i — 1) = 
1. Let W = Wi + W2 + {v £ B* : («, v) G M/ and u G W2} and note 
that \W\ < 21. 

2.2.2 We now construct M"^ from M- so that no vertex in B*-B is missed 
and unmarked. Let U be the set of unmarked vertices in B*—B missed 
by M[. We construct a matching M in (F - W) D (B^B%) - MAi+1 - 
... — MA +2j_2 sucn that every v G U is an endpoint of some edge in 
M. (We esily obtain this matching because the neighborhood of every 
v G B* - B is at least \y/K > \B* - B\.) We remove from M[ edges 
incident to M and we add them to MAi+2i. We remove additional 
edges not incident to vertices in W2 from M[ n -B^ or M[ D i?f and we 
add them to MAi+2i so |MAi+2i n B?| = |MAi+2i n £2*| < A1/5. We 
then set M'^1+2i_x =M[\JM. 

2.2.3 We now finish the construction of MAi+2-, again so that no vertex 
in B* - B is missed and unmarked. Let U be the set of unmarked 
vertices in B* - B missed by MAi+2i. Let X be the set of big vertices 
that are endpoints of edges in MAi+2i. We construct a matching M 
in {F-W2-X)D {Bl,B*2) - MAi+1 - ... - M'^i+2i_x such that every 
v G U is an endpoint of some edge in M. We add M to the final 

M'Ll+2i. 

6.3.3    The patching 

We now attempt to construct the matchings M^j+i, •■•,MA1+A2- F°r * 
1,..., A2, we obtain M^i+i by augmenting MAi+i in H = F — MAJ+I — ... 
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MAJ+I-I with a disjoint matching hitting all unmarked vertices in B missed 
by M'^i+i as follows: 

3. Let U\ and U2 be the sets of unmarked vertices missed by M'^ +i in B\ 
and B2, respectively. We attempt to find a perfect matching M in the 
bipartite subgraph defined by the bipartition (Ui,U2) and with edge 
set E(H)nE{Ui,U2). 

If we successfully obtain such a matching M, we add its edges to MA +i 

to obtain M^+i. 

If we fail to obtain M, we find the sets X' C Ui and Y' = Nff2{X') 
such that \X'\ > \Y'\ and we set X" = U2-Y' and Y" = Ux -X' = 
NfciX"). Let Y = B2-X"andX = {»el': df2(u) > iA-A19/20}. 

Claim 24 {X,Y) forms a fail pair in (B\,B2). 

Proof:    The claim is true if the following three properties hold: 

i. |Y|<|X| + A19/20. 
Proof: \Y\ < \Y'\ + 2|MAi + .| + m{B2, Ax + i) < \X'\ + ±A9/10 + 2 < 
\X\ + A9/10. The last inequality follows from X' - X C L where 
L = {v E B : dei(v) > 2\/Ä} is of cardinality 2\/Ä: since if v G Bi —L 
then dg» > dF

B2{v) - i > 1A - 3A9/10 - \A19/20 < ±A - A19/20, 
and if v € B2 - L, a%x (v) > ^A - A19/20. 

ii. For all v in X: dY(v) > £A - A19/20. 
Proof: dy(u) > d£(t>) = d%2(v) > 5A - A19/20 by definition of X. 

iii. IBi-Xl^A-A19/20. 
Proof: Since \X"\ > \Y"\, X" is not empty. If v € X" then d£(v) = 0. 
It follwos that |Bi - X| > d* (v) > df, («) - A3/5 > £ A - A19/20. 

D 
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For completeness, we include the proof by Reed [Ree95] that x'(G) = 
|"x*(Gr)] for any near-bipartite graph G. Actually, he shows that we can 
determine whether G has an overfull subgraph using just one application of 
the max. flow - min.cut algorithm. With a bit more work, we can obtain 
an edge coloring of G using |"x*(G)] colors. 

Consider a graph G and a vertex v of G such that G — v is bipartite with 
bipartition (A, B). Let k be any integer greater than or equal to A. We 
present an algorithm for determining if G has an edge coloring using k 
matchings. If the algorithm does not return a k edge coloring of G, it 
returns a subgraph H of G such that \E(H)\ > ky 2~\- This shows that 

X*(G) > k. 

The algorithm relies on the following 

Key Observation: Let G be a near-bipartite graph. Let v be a vertex of 
G such that G — v is bipartite with bipartition (A,B). Let k > A(G) be 
an integer. Let I = OIA{V). Then, there is an k edge coloring of G if and 
only if there exist a partition of G into two subgraphs G\ and Gi such that 
A(Gi) = /, A((?2) <k — I, and G\ contains all the edges between v and A. 

Proof: If G has a edge coloring using k matchings then defining G\ to 
be the set of matchings containing an edge between v and A, and setting 
(?2 = G — G\ yields the desired partition. 

Conversely, note that for any such partition into G\ and G2, both G\ and 
(?2 are bipartite. Thus, G\ has an edge coloring using / = A(Gi) colors and 
G2 has an edge coloring using A(.#2) < k — I matchings. So, G has an edge 
coloring using k matchings.      □ 

This key observation implies that rather than trying to find a k edge coloring 
of G directly, we can simply test for the existence of an appropriate partition 
of E{G) into two subgraphs G\ and G<z- Actually, we will try to construct 
G\ — v. So, we let I be the number of edges between x and A. We let m be 
the number of edges between x and B. By symmetry, we can assume that 
I < m. We attempt to find a subgraph F of G — v satisfying: 

(1) Ww e A,dc-v(w) — (k — I) < dp(w) < I — /J,(V,W), and 

(2) Vw e B, dG(w) -(*-/)< dF(w) < I. 
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To determine if such a subgraph exists, we solve a maximum flow problem 
on a network G* obtained from G — v as follows: 

(i) directing all edges from A to B, 

(ii) adding a new node dummy, an arc from dummy to each node of B, 
and an arc to dummy from each node of A, 

(iii) giving a capacity of one to each arc corresponding to an edge of G, 

(iv) giving a capacity of k — do (w) to the arc between w and dummy, 

(v) setting the demand at each node of B to /, and 

(vi) setting the demand at each node w of A to — (/ — fi(v, w)), and 

(vii) setting the demand at dummy to l(\A\ — \B\ — 1). 

Now, if the desired flow exists then an integer valued flow exists and can 
be found in 0(\E(G)\V(G)\log{\V(G)\)) time using standard network flow 
techniques (see [LP86]). The edges of G with flow one clearly yield the 
desired F and hence the partition Hi and H^. 

If the desired flow does not exist then there is a set S C V(G*) such that 

E„es demand{v) - Y,uveE(G*),veS,ueV-scaPacitv(uv) > °- We show now 

how to convert this cut into the desired overfull subgraph. 

Case 1: dummy 0 S 

Let A' = A n S, B' = B n S. We have: 

l\B'\-l\A'\ + YJaeA^(v,a)-Y,beB^-dG{b))-T,aeA'T,beB'li{a,b)>^ 

or equivalently with H the subgraph induced by S + v. 

\E(H)\ - k\B'\ + 1{\B'\ - \A'\) > 0 (A.l) 

Now, clearly \E(H)\ < A\B'\ +1 < k\B'\ + / so \B'\ > \A'\. On the other 
hand, \E{H)\ < A\A'\ + (A - /) < k\A'\ + (k - I). So by A.l, we must have 
\B'\ < \A'\. So \B'\ = \A'\, and we obtain: \E(H)\ > k\B'\ = *M^. Now, 
H is the desired overfull subgraph. 

Case 2: dummy € S 
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Let A' = A - S, B' = B - S, S' = A'UB'. We know that the sum of the 
demands in S' added to the capacity of the arcs from S' to S is negative. 

Thus, 

l\B'\-l\A'\+^2^(v,a)+^2(k-dG{a))+Y^    ]C   A*M) < 0 
a€A' a€A' aeA' bGB-B' 

or equivalently with H the subgraph induced by S': 

\E(H)\>k\A'\ + l(\B'\-\A'\) 

But this is impossible as \E(H)\ < k\A% \E(H)\ < k\B'\, and / < k. 

Thus, we see that the chromatic index of G is indeed the roundup of its 
fractional chromatic index. We also know that the chromatic index of G 
is at most -^ because we can delete y of the edges from v and obtain 
a bipartite graph. Thus, applying the procedure described above ^ times 
allows us to determine the chromatic index of G. The algorithm also returns 
two bipartite graphs Hi and H2 such that x'{G) = A(Hi) + A(H2). We can 
use a standard algorithm[LP86] which runs in 0{A2\E(G)\) time to color 
each of these graphs and thereby obtain a coloring of G. Actually, by using 
binary search we can determine x'(Gr) using at most log(A) calls to the above 
procedure. Thus, we obtain an 0{(A3 + A2(logA)(log\V(G)\))\V{G)\2) time 
algorithm for edge coloring nearly bipartite graphs of maximum degree A. 
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